Posted by: aviatnetworks | January 29, 2015

Your Network Deserves Better than a Regular Router

Aviat-Networks-says-Regular-Routers-bad-for-Microwave-Networks-but-there-is-good-news-in-microwave-routers-January-29-2015

Regular routers are bad news for microwave networks. But there is also good news in the form of microwave routers. Photo credit: Mike Licht, NotionsCapital.com / Foter / CC BY

Mobile network operators (MNOs) continue to reap the windfall of the widespread adoption of smartphones. Mobile data volumes spiked initially and still rise quarter over quarter. Along with the demand for more data throughput from their subscribers, MNOs have to accommodate the greater need for responsiveness closer to the network edge.

While regular routers are good at serving Layer 3 services to mobile users on fiber-heavy backhaul networks, they do not do a very efficient job of servicing mobile backhaul networks that primarily use microwave radio. As it turns out, the worldwide majority of mobile backhaul networks are still based on microwave technology, as regularly updated industry research shows.

What can an MNO with microwave backhaul do to bring Layer 3 functionality to its customers that will handle bandwidth constraints, unique aspects of translating router protocols across the microwave interface and failure detection and recovery, among others?

Aviat Networks has published an article in Mobile World magazine that looks at these challenges of regular routers when used in a microwave backhaul network and proposes possible solutions.

Posted by: aviatnetworks | January 26, 2015

Converged Microwave Traffic Emerges in Africa

Aviat-Networks-Technical-Marketing-Manager-Siphiwe-Nelwamondo-discusses-Microwave-and-IP-Convergence-with-Engineering-News-January-23-2015

Convergence: Photo credit: rkimpeljr / Foter / CC BY-SA

In South Africa, as in many emerging markets, wireless backhaul has long been a proverbial bottleneck to network growth. Due to cost and logistics, fiber optic technology remains out of reach as a practical solution for most aggregation scenarios, save for urban applications where population density and shorter routes can justify the exorbitance.

Now with the advent of higher speed, higher throughput mobile phones and tablet PCs, higher-order networking technologies are being pressed into service. Standard microwave radio, while cost efficient and effective for crossing far-flung forests, monumental mountains and desiccated deserts with traditional payload such as voice calls and moderate data rate applications, was not designed for the connectivity and capacity requirements of Layer 3 services. Thus, the bottleneck has grown still narrower. Even to the point where standard microwave radio might be hitting its upper threshold for serving mobile broadband.

Technical marketing manager, Siphiwe Nelwamondo, recently sat down with Engineering News, to discuss these issues and the present and future of microwave radio backhaul in South Africa and across the continent. In addition, he delved into how microwave networking is bridging the radio-IP gap for Layer 3 services by running IP/MPLS protocols on converged microwave routers.

As more and more mobile services get pushed out to the edge of the access network, the imperative for Layer 3 will only grow. Even as 3.5G and 4G mobile users who depend on full-IP increase in number, a majority of second- and third-generation subscribers will continue to rely on circuit-based technology. Not to worry, Nelwamondo covers how TDM telephony will be supported in a converged microwave and IP environment.

The full article goes on to discuss how mobile operators will strategize providing enterprise services from the cellular base station with microwave networking, virtual routers and more.

Posted by: aviatnetworks | December 31, 2014

Wireless Transmission blog 2014 in review

Aviat Networks had WordPress prepare a 2014 annual report for the official blog of Wireless Transmission. What follows is a summary of the highlights from the year that saw the launch of microwave networking.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. The Aviat blog was viewed about 40,000 times in 2014. If it were a concert at Sydney Opera House, it would take about 15 sold-out performances for that many people to see it.

Click here to see the complete report.

Posted by: aviatnetworks | November 5, 2014

The Shellshock IT Vulnerability in Relation to Microwave Radio

Since the beginning of October 2014, there has been a lot of coverage in the technology press concerning the so-called “Shellshock” or “Bash Bug” computer vulnerability. All the coverage has been exclusively related to general IT and computer systems. But how does this vulnerability concern microwave radio systems? Take our poll and let us know what you know.

 

Aviat Networks recently completed an exhaustive internal review of all our current and legacy products and found no inherent weaknesses in any of the systems toward Shellshock. We have recently informed our customers of this end result (see statement).

Posted by: aviatnetworks | September 30, 2014

Mt. Otto: 11,000-foot Microwave Site Install in Papua New Guinea

Aviat Networks and its partners Kordia and Eltek installed an entirely off-the-grid microwave repeater and spur atop 11,000-foot Mt. Otto in Papua New Guinea.

Aviat Networks installed an entirely off-the-grid microwave repeater and spur atop 11,000-foot Mt. Otto in Papua New Guinea. Image credit: Shutterstock

In all its years, Aviat Networks has installed a great many microwave radios and in some very interesting places. On the sides of the largest dams. On top of the most famous bridges. Deep in the Aboriginal Outback. Way out to sea. In the frozen wastes of the Great White North.

Our latest triumph of man and mechanism over elements comes by way of Papua New Guinea, one of the last lands to be touched by the progress of high technology.

Deep in the heart of this primordial island nation, an imposing mountain stands: Mt. Otto, nearly 11,000 feet (3500m) of steep slopes and very little summit. Few people climb it. There are virtually no roads of which to speak. The only practical way to bring wireless telecom gear up is via helicopter.

However, Aviat Networks was equal to the challenge. Aviat’s services department is loaded with can-do problem-solvers keen to tackle projects like this. In this case, a critical issue for the Mt. Otto site revolved around power. Issue resolved with a big Eltek generator, part of an amazing energy solution that powers an Aviat WTM 6000 14+2 repeater with a 7+1 spur—all built to run at Mt. Otto’s high altitude without supervision for extended periods. If we look a bit closer at the site specs, we will see:

  • 2 x WTM 6000 15+0 Ethernet with 1+1 SDH (design capacity of 3Gbps; normal operation close to 4Gbps)
  • 1 x WTM 6000 6+0 Ethernet with 1+1 SDH (design capacity of 1.5Gbps normal operation; close to 2Gbps)
  • 12 foot antennas in a Space Diversity configuration across a 91km path
  • 8- and 10-foot antennas to other spur sites

Heady stuff.

To keep the site online, an array of 96 solar panels powers the microwave radios with 24 kW of electricity. As backup, the 80KVA Eltek generator provides up of five days of continuous current in case of extended cloudy weather. It is capable of this as it runs on fuel that’s kept warm in a modular container. Otherwise the fuel would freeze solid in the thin mountain air. A large battery installation provides an extra five days of backup power. Those same solar panels top off the charge on these 57,000 pounds (25,704 kg) of batteries. It’s a closed system completely designed for 100 percent off-the-grid operation.

To complete the site, required dozens of sorties airlifting personnel and all the material necessary to build and install the site. Overall, the Mt. Otto site is an amazing accomplishment in a super remote and hard-to-get-to place.

Older Posts »

Categories

Follow

Get every new post delivered to your Inbox.

Join 293 other followers

%d bloggers like this: