Professional Services Center in San Antonio, TX

Network Management Centre. BT has several mana...

Image via Wikipedia

Nathan Hitchcock, NOC team lead for Aviat Networks, provides guidance for all network services professionals in the company’s network operations center during its 24×7 rotation. At the NOC, Hitchcock describes a range of customers the company services—from Internet service providers to public safety networks (government wireless) . “Our customers find value in the NOC,” he says.

“It’s a natural progression that once the network is live, that the NOC just take over the managed services aspect of it,” Hitchcock says. “We provide value to our customers by helping reduce the operational expenses that are associated with managed services.”

When Aviat Networks moved its NOC to San Antonio, Texas, many backbone infrastructure and wireless security improvements were made, according to Hitchcock. And all the technical knowledge was transferred from Raleigh, N.C. He sums up the Aviat Networks’ network services value proposition as: a multi-disciplinary team that provides managed services to meet the clients’ needs.

Ireland Issues Spectrum Consultation on Wireless Communications

160

Image via Wikipedia

The Irish communications regulator, ComReg, recently issued a consultation on its spectrum management strategy for 2011-2013. This was a wide-ranging consultation covering all aspects of spectrum management. However, in terms of interest to the microwave fixed point to point business were the following items:

A stated intention to open new bands for fixed point to point microwave wireless backhaul at 26GHz, 28GHz and 31GHz in line with the relevant ECC recommendations. In addition, ComReg requested comments on the following proposals regarding the use of Adaptive Modulation (ACM) and Cross Polarization (XPIC).

“Given the benefits identified from the use of Adaptive Coding & Modulation (ACM) in terrestrial Fixed Links, ComReg is proposing to make the deployment of ACM mandatory for all new fixed link applications across all fixed link frequency bands from 01 June 2012,” the consultation reads.

“With a view to encouraging spectrum efficiency in congested frequency bands, ComReg is proposing to make dual polarization mandatory for all new fixed link applications, where more than one link is required on the same path in the same frequency band, from 1 June 2012.”

The above two proposals demonstrate ComReg’s forward vision in embracing new wireless technology to increase the viability of using microwave solutions for critical traffic. Compared with some other regulators around the world, this is a welcome and refreshing approach.

Also ComReg indicated its intention to explore the possibility of using alternative licensing schemes, e.g. light licensing or link registration, in bands above 50GHz that are under consideration for opening in Ireland. Let me know your thoughts.

Ian Marshall
Regulatory Manager, Aviat Networks

Mobile Security Requires More Than Secure Wireless Devices

Person with PDA handheld device.

Image via Wikipedia

When people think of mobile security, they usually think of encryption for their smartphones, tablet computers such as the BlackBerry PlayBook or other wireless devices. Or they think of a remote “wipe” capability that can render any lost device blank of any data if some unauthorized party did in fact try to enter the device illegally. These wireless solutions are all state-of-the-art thinking in the mobile security community. And many wireless equipment OEMs and third-party mobile security providers offer them.

But they only protect the data on the devices. They only protect so-called “data at rest” once it’s been downloaded onto the iPhone or iPad. They don’t speak to the need to cover “data in motion” as it is transmitted over the air. Some parts of the over the air journey are protected by infrastructure in the form of Wi-Fi and GSM. One is notoriously subject to human failing to enable security and the other has been broken for sometime. And then there is wireless security for backhaul. In this area, there has not even been an industry standard or de facto standard established. And most microwave solutions providers don’t even offer options for wireless security on the backhaul.

Fortunately, this is not the case across the board. Strong Security on the Eclipse Packet Node microwave radio platform offers three-way protection for mobile backhaul security: secure management, payload encryption and integrated RADIUS capability. Read the embedded overview document in full-screen mode for more details:

Small Cell Mobile Backhaul: The LTE Capacity Shortfall

With immense mass-market demand for mobile broadband services, and emergence of new high-capacity mobile devices (e.g., smartphones, tablets) and applications, many of the world’s most advanced mobile networks are struggling to deliver a high-quality consumer experience. Explosion of per-user data consumption, combined with subscriber growth and mobility needs, is putting today’s networks are under tremendous pressure. In addition, as operators continuously evolve networks with the latest technology (e.g., 2G, 3G, 4G) to meet these capacity and coverage demands, network costs are exploding and operators are struggling to keep up profitable businesses.

LTE, representing a 4x capacity improvement over current 3G networks, on its own will be insufficient to address all future capacity demands, as mobile data traffic will double every year equating to a 32x growth by 2014 (Figure 1).

32x backhaul capacity demand jump

Figure 1: The forecast 32x jump in data demand cannot be met alone by LTE, which can only offer a 4x increase over current wireless technologies.

Increasing spectral efficiency with new versions of LTE will help manage the shortfall, but these solutions are not yet available and again will not provide the volume of capacity necessary. Acquiring more spectrum would help but additional spectrum is costly and in most cases not available. Traffic management approaches such as caching and mobile data offloading are emerging to help manage the load but because of limited cache hit rates, these solutions will be insufficient to address the capacity shortfall. Offload techniques, such as in-home femto cells and mobile offload gateways, are emerging to reduce load on mobile infrastructure, but again they will be insufficient. A new approach is required.

Emergence of Small Cells

To meet these capacity challenges, and address ever-prevalent coverage issues, new small cell network architectures are emerging based on a new generation of low power, small cell (i.e., micro, pico, femto) mobile base stations. ABI Research estimates 4 million pico base stations will be shipped per year by 2015. Being deployed into an existing network on lampposts, utility poles and building walls, these base stations offer a way for operators to meet challenges of urban, suburban and in-building locations. Combined with existing base station infrastructure, these small cells are transforming the flat macro mobile network into a multi-level, hierarchical radio access network (Figure 2).

Macro, Pico & Femto base stations

Figure 2: Combined with existing macro base station infrastructure, small cells are transforming the flat mobile network into a multi-level, hierarchical radio access network.

Small Cell Backhaul: Wired or Wireless

When considering IP mobile backhaul options, operators must first ponder the choice between wireline or wireless solutions. There is generally no “one-size-fits-all” solution, and in reality we’re likely to see a mix of mobile backhaul technologies deployed to meet the small cell backhaul challenge. However, because of challenging utility pole and lamppost deployments, operators cannot count on fixed line options (e.g., fiber, cable, copper/DSL) being ubiquitously available. Moreover, more than 40 percent of the world’s macrocell base stations are backhauled wirelessly and because of these challenging locations, we’re likely to see a much higher percentage of wireless-based backhaul in small cell applications.

Wireless Backhaul for Small Cells: Challenges

Small cell deployments present a number of challenges—not the least of which is impact on mobile backhaul. Operators—and equipment vendors—must consider the key factors below when selecting (and designing) wireless backhaul solutions for small cells:

Lower cost solutions needed—Smaller cells mean more cells and thus more mobile backhaul. To meet overall cost objectives, lower cost backhaul solutions will be required to make sure small cells can be deployed cost effectively. Typical macrocell backhaul CapEx is about 50 percent of the total base station CapEx, and similar ratios will be required to ensure a cost-effective solution.

Space-optimized solutions required—To improve street-level coverage and capacity, small cells are being deployed on lampposts and utility poles. These challenging deployment locations place demands on the physical attributes of backhaul solutions. Unlike traditional cellsites, typical dish antennas will not be feasible for such deployments. In addition, because of space constraints and operations costs, backhaul and base station hardware integrated into common enclosures would be ideal.

Line-of-Sight (LOS) not possible—Street level, metro area deployments mean line of sight to backhaul hub locations are not always—in fact—rarely possible. Requiring large antennas, combined with lack of LOS characteristics, makes traditional point-to-point wireless backhaul ineffective for most small cell backhaul applications.

Interference must be carefully managed—When it comes to wireless backhaul solutions, close proximity of cellsites creates possible interference issues for the backhaul system. These interference issues are relatively new for backhaul systems and need to be considered.

High-capacity solutions required—Driven by increasing demand for mobile data, backhaul requirements for small cells are expected to approach macro cell capacity requirements (50-100Mbps per cellsite) in the next three years.

Which challenges matter most will depend heavily on how small cells eventually are deployed. Stay tuned for a followup blog post where I discuss small cell backhaul deployment options and available solutions to address these needs. In the meantime, feel free to leave me your thoughts, or comments.

Gary Croke
Sr. Product Marketing Manager, Aviat Networks

Smart Grid Wireless Technology Comparison Chart

Cropped version:A worker climbing down an elec...

Image via Wikipedia

Smart Grid is an enabling opportunity for operators to help address energy generation and consumption in an intelligent and efficient manner.

The explanation of Smart Grid solutions in this comparison chart should help to clarify the various choices for wireless connectivity—from access to backhaul, for data or management transmission—using any one or a combination of various technologies.

It compares various wireless technologies for wireless applications related to Smart Grid communications. It also covers general information such as “How to use in Smart Grid,” key advantages and notable weaknesses.

Key technical parameters such as bandwidth, coverage, user data rates and cost are also considered. Microwave, WiMAX, Mesh, LTE, 3G cellular, Power Line Carrier, WLAN and Zigbee are described.

If you like this chart and want to receive a complimentary hard copy version, leave a comment with your name and mailing address (your comment won’t be published). There is an extremely limited number of stock on hand, and we will fulfill as many requests as possible.

Microwave Wireless Backhaul Case Study: Tooele County (Utah)

Deseret Peak, the highest peak of the Stansbur...

Image via Wikipedia

In an all-indoor configuration, Aviat Networks’ Eclipse Packet Node platform has delivered flexibility to Tooele County, Utah, to transition its partially mountainous, rural legacy TDM network to IP when the traffic demands it. When greater functionality is required, the modular nature of the platform is called upon to ease installation and maintenance.

“The entire design is highly modular, and we are able to drop in new network cards with the latest technology. We just swap new cards for old,” says Dave Williams, communications manager for Tooele County. “So not only does Eclipse Packet Node provide native TDM support for our latency-sensitive, mission-critical traffic today but also allows us the flexibility to migrate to native all-IP traffic as our applications evolve. With this platform, we get the best of both worlds.”

TDD or FDD Wireless: That is the Question!

Relay towers on Frazier Mountain, Southern Cal...

Image via Wikipedia

TDD, or Time Division Duplex, where a single radio channel is used to send and receive data, has been a common technique employed in unlicensed microwave transmission bands, such as 2.4 and 5.8GHz. The advantage of TDD is a simplified and lower cost design, often based upon 802.11 standards. In contrast, FDD, or Frequency Division Duplex, where data is transmitted in one frequency channel and received in another (separated by anywhere from less than 100 to more than 1,000 MHz) has been the staple of licensed frequency bands between 2 and 38 GHz worldwide.

Now, a number of the CEPT recommendations for the new point to point bands over 40GHz contain provisions for TDD operation. TDD is accommodated either as an alternative band plan or a mixed TDD/FDD band plan, in addition to the more common FDD band plan. However, CEPT recommendations are only just that—recommendations. How these bands will be implemented in each country will be determined by the individual national regulatory authority.

Recently, we asked a number of European national regulators about if and how they would introduce TDD operation in these new bands. The general response was that they were not opposed to the introduction of TDD in principle, and that such operation would have to be worked into existing or revised band plans. One complication raised was that spectrum would have to be reserved for guard bands between TDD and FDD segments within the same band. Regulators usually try to avoid having to waste valuable spectrum in this way. Also, once a band plan is established and the spectrum allocated to users, efforts to introduce TDD operation at a later date is extremely difficult.

Some regulators have already issued new national band plans at 42GHz and above, and to date none of these allow for TDD operation. Furthermore, for countries that have allocated new bands through spectrum auction, there we see the usual FDD style symmetric band approach.

Despite the appeal of TDD operation from a cost perspective, early indications are that although provision for TDD operation is being made in these higher bands, practical complications and concerns over maximizing the use of new bands may prevent its widespread introduction.

What are your thoughts on using TDD more in national band plans? Leave a comment, if you’d please.

Ian Marshall
Regulatory Manager, Aviat Networks

Related articles

Aviat Networks Training Center for Wireless Network Services

At the Aviat Networks full-service training facility in Santa Clara, Calif., Patrick Davis, director of global support services for Aviat Networks, discusses the numerous offerings that the site can provide. Bringing customers into a closed environment such as the Santa Clara facility allows them to focus on learning the technologies and theories behind microwave wireless backhaul, he says.

We sit down with the customer without distractions outside the office and go over the entire wide portfolio of end-to-end services we offer, Davis says. We cover everything—from IP theory to microwave theory to pathloss to transition from TDM, he says. Product training is on Aviat Networks equipment and other vendors’ devices, such as those from Tellabs.

Aviat Networks in the News: Highlights & What’s Ahead in Wireless

France Télécom phone booth in Wellington, New ...

Image via Wikipedia

This month we have a few technology updates from our travels abroad to London and Amsterdam where we presented our perspectives on backhaul at two LTE conferences.

In May, Stuart Little, our director of global corporate marketing, presented at an LTE backhaul conference organized by Telecom IQ in London. Stuart hosted a workshop that focused on the current challenges faced by mobile service providers while preparing their backhaul networks to meet the demand of next generation LTE broadband services. Comprising an intimate crowd of mostly operators, the conference focused on a series of operator presentations, panel discussions and roundtable conversations. Representatives from operators such as BT, Telenor, France Telecom, Telecom Italia, Vodafone, Mobitel and Saudi Telecom were in attendance. Some key issues discussed focused on the backhaul needs of LTE, which are difficult to predict. With a few exceptions, most LTE deployments to-date are limited or in the trial phase. Operators are also grappling with a mix of technologies in their networks, making migration to all-IP a huge and complicated task.

While in London, Stuart also spoke at the 13th annual Transport Networks for Mobile Operators (TNMO) Conference on May 10. TNMO is one of the largest conferences in Europe focused purely on backhaul transport networks. This year, Aviat Networks participated by presenting on the topic of “Realistic Capacity Requirements for LTE,” or why fiber is not the only answer, and took part in a panel discussion on Carrier Ethernet for mobile backhaul. The conference was fairly well attended, with a packed agenda that covered the full range of transport challenges from the access to the core. Numerous solutions to the problem of delivering more capacity to meet expected demand were discussed, including network sharing, microcells, network offload and intelligent backhaul optimization techniques. It seems that there is no single winner in the race to find a solution. Operators are going to have to choose from an array of options to get the right fit for their particular needs.

Over in Amsterdam, Peter Croy, our senior IP network architect, presented on the topic of Carrier Ethernet for LTE mobile backhaul requirements at the LTE World Summit. Not sure if you have read previous blogs or joined in our webinars on this subject, but Peter is a well versed expert on backhaul. See his overview from the conference.

With summer fast approaching and vacations looming, June will be a bit slower. Good thing as planning will begin for some major events and shows coming in the fall and early 2012.

An event you won’t want to miss is the 1588v2 Synchronization for Mobile Backhaul Networks Webinar on June 6. Hosted by Patrick Donegan, senior analyst at Heavy Reading. This webinar will bring together leading vendors and operators to develop best practice guidelines for operators as they deploy the 1588v2 standard. Drawing on real implementation case studies, industry leaders will demonstrate where some implementations have gone wrong in the past and what leading operators and vendors are now doing right to deploy this key standard. Please join us for this highly interactive webinar. The webinar is co-hosted by Errol Binda, our very own solutions marketing manager.

Another interesting event is the National Urban Areas Security Initiative Conference (UASI) conference held in San Francisco, June 20-23. This conference is in cooperation with Department of Homeland Security, Federal Emergency Management Agency and the Grants Programs Directorate. The conference will provide an opportunity for stakeholders from all areas of homeland security and emergency preparedness to gather and exchange important information to make the United States safer.

We will have a booth, No. 85 in the Continental Ballroom, at the conference where we will display our public safety solutions along with showcasing all-indoor configurations of Eclipse Packet Node. Ali Hirsa from Aviat Networks will be at the booth to answer any questions you may have.

That’s it for now. I will be back in touch next month to update you on the latest happenings at Aviat Networks. Until then, follow the dialogue and news on our social sites.

www.aviatnetworks.com

www.facebook.com/AviatNet

www.twitter.com/aviatnetworks

www.blog.aviatnetworks.com

www.youtube.com/aviatnetworks

Cyndy Johnson
Director of Corporate Communications, Aviat Networks

Pictures From LTE World Summit (for 4G Wireless)

random pics of amsterdam

Image via Wikipedia

As we outlined last month, Aviat Networks was sending a representative to the LTE World Summit in May—me. With all apologies to Mussorgsky, we would like to present a few mental pictures from the event in Amsterdam. Presenters came from some of the leading Tier 1 mobile operators in the Americas, Asia and Europe. So without further adieu, on with the show.

Americas

An American carrier with operations in EMEA and APAC presented LTE as a major driver in its U.S. wireless strategy. They have the audacious goal of rolling out LTE into even more metro areas, covering nearly 200 million people in the U.S. by the end of 2011. Continuing to launch new handsets has the possibility of making this carrier more attractive for customers.

Asia

One Asian operator has launched LTE in the 2100MHz band exclusively through “remote radio heads” that connect back via fiber to base band radio units hosting multiple antennas and radio carriers. They are on course to switch off 2G—not GSM compatible—in early 2012 and focus exclusively on rolling out LTE while halting investment even in 3G UMTS and HSPA.

Europe

One European operator proposed to launch LTE for fixed-wireless broadband coverage in German “not spots”—as opposed to hot spots—that lack both copper and fiber infrastructure. Their main concern for LTE is obtaining enough spectrum and the upcoming auction of 800MHz spectrum for wider coverage areas. They believe LTE will deliver Internet access services well and predictably.

Another European operator has launched LTE in six Nordic and Baltic markets, with Lithuania becoming the last addition this March. In Stockholm, a recent drive survey found that there was no spot with less than 20Mbps peak rate in the surveyed area of the operator. The main concern for this operator is the agreement on spectrum bands for LTE. They have proposed a tri-band approach: 800MHz for countrywide blanket coverage, 1800MHz for suburban/urban capacity/coverage and 2600MHz for small cells and indoor capacity. They are not planning to build a Voice over LTE (VoLTE) IMS core network system to support SIP based voice. They will instead rely solely on CS-fallback—i.e., put voice on their 3G/HSPA network.

And for one European operator, its backhaul network hosting for several U.K. mobile networks will get more challenging as those networks upgrade to LTE. Backhaul capacity concerns remain an issue for wholesalers that plan to provide services to multiple carriers.

Peter Croy
Senior IP Network Architect, Aviat Networks