E-band Wireless Comms: UK Announces New Approach

On Dec. 16 2013, Ofcom—the UK telecom regulator—announced a new approach for the use of E-band wireless communications in the United Kingdom. This new approach results from an earlier Ofcom consultation exercise in which Aviat Networks participated.

To summarize, the new approach, which is available for licensing after Dec. 17, 2013, splits the band into two segments. Ofcom will coordinate the lower segment of 2GHz, while the upper segment of 2.5GHz will remain self-coordinated as per the prior policy.

The segment Ofcom coordinates will follow the usual regulatory processes for all the other fixed link bands it oversees. Moreover, Ofcom has already updated all the relevant documents and forms to accommodate E-band. While we (i.e., Aviat Networks, other telecom vendors) would have preferred the larger portion of spectrum to have been granted to the Ofcom-coordinated process, we welcome this new arrangement because it provides an option for greater security and peace of mind to operators in terms of protection from interference than was envisaged for the previous all self-coordinated spectrum regime.

For a more detailed look at the new E-band arrangement, Figure 1 shows the Ofcom-coordinated section sitting in the lower half of both the 71-76GHz and 81-86GHz bands thus allowing for the deployment of FDD systems in line with ECC/REC(05)07.


Figure 1: Segmented Plan for Mixed Management Approach (click on figures to enlarge)

In terms of channelization within the Ofcom-coordinated block, the regulator announced that it would permit 8 x 250MHz channels, 4 x 500MHz channels, 1 x 750MHz channel and 1 x 1000MHz channel as per ECC/REC(05)07. Ofcom also stated that 62.5MHz and 125MHz channels will be implemented as soon as the relevant technical standards, etc., from ETSI are published. Figure 2 shows the Ofcom channel plan:


Figure 2: Ofcom Permitted E-band Channelizations

Regarding equipment requirements, Ofcom stated that it will allow equipment that meets the appropriate sections of EN 302 217-2-2 and EN 302 217-4-2. This includes the antenna classes (e.g., classes 2-4) that will allow the deployment of solutions with flat panel antennas. Aviat Networks welcomes this approach and hopes that other regulators—notably the FCC in terms of antenna requirements—currently considering opening up and/or revising their rules for E-band adopt similar approaches.

The license fees for the self-coordinated segment remains at £50 per link per annum, whereas in the Ofcom-coordinated segment the fees are bandwidth based as reflected in Figure 3:

Figure 3-Ofcom-Bandwidth-based-Fees-Aviat-Networks-blog-on-Ofcom-E-band-policies-18Dec13

Figure 3: Ofcom Bandwidth-based Fees

Notwithstanding the current fees consultation process that Ofcom is undertaking, these “interim fees” will remain in place for five years, after which time the results of the fees review may mean that they will be amended.

Also because of responses received during the consultation process, within the self-coordinated block, Ofcom will now require the following additional information for the self-coordination database: antenna polarization (horizontal, vertical or dual), ETSI Spectrum Efficiency Class and whether the link is TDD or FDD.

Ian Marshall
Regulatory Manager
Aviat Networks

‘My Experience’ with Microwave Radio Systems


Quasar GB 1428, 12.4 billion light years from Earth, a celestial source of enormous X-ray and microwave energy. Photo: NASA’s Marshall Space Flight Center / Foter.com / CC BY-NC

Collectively, we as consumers of high-tech communications systems tend to think very analytically, very logically, about the solutions that form the core of our working lives. In all the fields that we pursue from mobile telecom to public safety to utilities to oil and gas to financial, microwave radio has touched, shaped and framed our worldview. But like a star in a distant galaxy, every user’s experience with microwave radio is unique. No exception to that totality of reality is Ron Beck, president emeritus and past chairman of the Utilities Telecom Council, a trade group dedicated to advocating telecommunications issues for energy companies and associated concerns.

In a recent video, Beck talks about his life with microwave radio for almost 30 years. Starting with analog TDM microwave radio, he has traveled the technology evolutionary path to arrive at the present day systems of digital IP/Ethernet microwave communications. However, before ever touching on any technical considerations, he talks about the people responsible for his and his company’s success with microwave. For utilities applications, Beck feels it is critical that the people he deals with at a microwave solutions provider understand his business. “The (Aviat) sales force understands utility applications; they understand what we need in a radio system,” he says.

Beck goes on to elaborate how Aviat design and engineering groups collaborate closely with his team to deliver exactly the solution that is needed. Service and standards-based technology are very important to him and make microwave radio very user-friendly because “frankly, you don’t have to touch it very much.” See and hear all Beck has to offer below:

The Rise of Tower Sharing in Africa


Cell tower, Ghana. Photo credit: aripeskoe2 / Foter.com / CC BY-NC-SA

A growing telecommunications trend in South Africa and other emerging markets across the African continent is the move to cell tower sharing. There are many reasons for this, but the need to reduce capital expenditure (capex) on towers and other infrastructure and retarget spending toward network development, customer acquisition and retention and need to accommodate growing mobile data traffic levels have forced the issue.

The trend toward independent ownership of telecommunications infrastructure such as tower sites, with leasing arrangements for multiple operators on each tower, closely mirrors moves in mature telecommunications markets around the globe, including the U.S. and Europe, as well as other big emerging markets such as India and the Middle East.

Tower sharing prevalent
While there is some reluctance by industry incumbents to offload tower infrastructure because they fear losing market share and network coverage, the tower-sharing model is still becoming more prevalent. This is particularly evident in markets where there are new players trying to penetrate the market, as well as in countries where coverage in rural, sparsely populated areas is needed to drive growth. Other important factors, such as the rising cost of power in South Africa, or unreliable power delivery in other parts of the continent have also helped to drive this trend.

Thus, the adoption of this model has gained significant momentum in Africa since 2008, with major mobile operators in Ghana, South Africa, Tanzania and Uganda striking deals to offload existing infrastructure to independent companies. These independent “tower operators” handle the operation and management of these towers, leasing space back on the towers to multiple network operators. This helps to reduce operating costs, improve efficiency and potentially boost an operator’s network coverage significantly and rapidly.

Smaller equipment requirements
To accommodate multiple network operators on a tower and cell site, smaller antennas are preferred, with additional requirements for smaller indoor equipment that draw less power. This configuration helps to decrease power consumption and cooling requirements resulting in more efficient use of diesel generators during times of power failure. However, having smaller antennas affects transmission power, capacity and efficiency. As such, mobile operators are turning to on-site solutions that offer all these benefits, but do not compromise on quality of service, capacity or data transmission speeds.

This also extends to the backhaul network, which often poses the most significant challenge for mobile network operators, especially as mobile networks continue to evolve from 2G and 3G to LTE. For example, as mobile networks continue to evolve, backhaul network architectures will need to change from simple point-to-point to more complex ring-based architectures. Operators that choose to share infrastructure will need on-site equipment that is capable of accommodating these changes, while still offering optimal transmit speeds and reduced operational costs.

Traditionally, most network operators also used optical fiber for their high-capacity fixed line core/trunking networks. However, as tower sharing becomes more prominent fewer operators are willing to spend the capital required to enable fixed-line backhaul from shared sites due to the associated costs. Therefore, more operators are turning to wireless backhaul as a suitable solution to transport data between the cell site and the core transport telephone network.

More capacity needed
As users demand more capacity on the access portion of the network, the core/trunking network also needs to sufficient capacity to be able to transport the aggregated traffic from all these sites. Many operators have turned to high-capacity trunking microwave systems to provide the required high capacity. These high-capacity trunking microwave systems have traditionally been installed indoors, usually in a standalone rack. They were also installed in a way that radio signal strength diminished significantly before reaching the antenna at the top of the tower, ,necessitating a bigger antenna to compensate. These all-indoor configurations also required big shelters and costly air conditioning.

Developing new technologies
In an effort to improve the efficiencies of mobile backhaul to meet modern demands, tower operators and their solution providers are reconfiguring these shared sites, and new technologies are being developed to solve these challenges.

For example, split-mount trunking solutions allow for up to four radio channels on a single microwave antenna, and lower costs associated with deploying and operating ultra-high capacity microwave links for increased capacity. Smaller and lighter antenna solutions can also be lifted and installed higher on towers more easily, which helps to decrease tower space and loading requirements, making these solutions less prone to wind damage. Moving radios from the shelter to the tower, next to the antenna, further reduces deployment and operational costs and simplifies antenna connections (e.g. eliminates inefficient, long waveguides; costly unreliable pressurization/dehydration systems). In these cases, smaller shelters or cabinets can be used, which decrease air-conditioning requirements even further.

However, regardless of how tower operators are able to reduce costs and improve efficiencies, the trend of this form of infrastructure sharing is set to continue, which will help to drive increased competitiveness in mobile markets across Africa. This will have a positive impact on the prices end-users pay for mobile data and voice services, and will help to accelerate the availability of connectivity across the continent.

Siphiwe Nelwamondo
Technical Marketing Manager, South Africa
Aviat Networks