• September 27, 2013

Basin Electric Team Tests Microwave Equipment

  • July 30, 2013

85 Microwave Operators tell us their Biggest Backhaul Challenge

England-Campion-Hills-communications-mast-with-microwave-antennae-Aviat-Networks-blog-30July13

England: Campion Hills communications mast with microwave antennae. Photo credit: David Stowell [CC-BY-SA-2.0], via Wikimedia Commons

The general mobile industry sentiment has typically been that the capacity bottleneck is the biggest challenge in backhaul. Thus, the focus has been on adding more capacity to address the surge of 3G and now 4G traffic. So you might think that this concern would rank first, particularly among microwave-centric operators, who are often looking to maximize their network throughput. We recently commissioned the experts at Heavy Reading to do a custom survey to get some quantifiable data to clarify this key question and a few others.

85 mobile operators were selected and surveyed globally, including a good cross-section from both developed and emerging markets. The respondents were screened to ensure that they all had a stake in microwave-specific backhaul: 93 percent had deployed microwave and the rest had plans to deploy it. In fact, 45 percent were categorized as heavy microwave users—those where more than 50 percent of their cell sites were served by microwave backhaul.

So we asked this select group, which consisted of mostly planners, engineers and strategy leaders, “What is the biggest challenge your company faces regarding the future development and deployment of microwave backhaul?” 

The results were interesting in that “total cost of ownership” actually eclipsed “increasing capacity” as their biggest challenge, as shown in the pie chart of survey responses below.

  • July 18, 2013

Come Fly with Me: Aviat Microwave Over-the-Air at U.S. Landmarks

Golden-Gate-Bridge-Aviat-microwave-dishes-at-top-of-tower-in-middle-between-suspension-cables

The Golden Gate Bridge South Tower shows the Aviat microwave radio installation directly in between the suspension cables. Photo credit: davidyuweb / Foter / CC BY-NC-ND

Frank Sinatra, “Old Blue Eyes,” would have been the perfect pitchman for Aviat Networks. From Los Angeles to Chicago to New York, Sinatra’s many hit songs were inspired by the big cities of America. Since the time Sinatra began his illustrious singing career, Aviat Networks (formerly Harris Microwave Communications Division) has been setting the bar high for superior performance, wireless microwave communication across the United States, from sea to shining sea.

With big cities come big landmarks. You know that enormous “HOLLYWOOD” sign on Mt. Lee in Los Angeles? Aviat is there.

And how about the panoramic Golden Gate Bridge in San Francisco? Yes, Aviat is there, too. Aviat Networks is “Designed, Built and Supported in the USA,” as well as proudly deployed among the most prominent and historic locales in America.

Closeup of Aviat-microwave atop the Golden Gate Bridge.

Close-up of Aviat microwave atop the Golden Gate Bridge.

You can find Aviat microwave on the side of beautiful Niagara Falls, as well as scraping the sky on the Sears Tower (now Willis Tower) in Chicago—that “toddling town.”

Right through the heart of “New York, New York,” Aviat radios are installed within the electric ambiance of Times Square and atop the soaring Empire State Building.

Even outside the urban corridors of America, Aviat is there. For example, Aviat equipment is deployed at the Hoover Dam in the Black Canyon along the Colorado River.

Aviat microwave radio at Hoover Dam in the Grand Canyon National Park, Arizona.

Aviat microwave radio at Hoover Dam near Grand Canyon National Park, Arizona.

You may say “so what?” Well, the beauty of it all is that while you’re taking in everything the USA has to offer in its rich collection of historic landmarks, you’ve never noticed the technology that helped shape modern telecommunications networks is operating reliably, flawlessly right at your side.

Aviat Networks continues to take flight in new locations across the globe, and we are doing it the American way!

Louis Scialabba
Manager, Solutions Marketing
Aviat Networks

  • May 17, 2013

What Does it Take to Get the Most out of Your Wireless Backhaul?

Wireless tower in Ghana. Photo credit: Rachel Strohm / Foter.com / CC BY-ND

Many wireless operators, such as MTN in Ghana, need to optimize management of their networks and Aviat can help with products, services and software capabilities. Photo credit: Rachel Strohm / Foter.com / CC BY-ND

Wireless backhaul operators, both mobile phone networks and others carrying dedicated traffic, face the constant issue of maximizing the functionality of their systems.

In the emerging markets around the world, the pressure can be most intense. Wireless network reliability, availability and capacity all need to be increased. Customer expectations are on the rise, and operators must take the appropriate steps to meet and exceed them.

In working with MTN Ghana, Aviat Networks recently completed an implementation to increase network visibility (i.e., intelligence) by close to one-third. Aviat’s professional services experts designed the mobile operator’s backhaul links for high capacity and resiliency. Using ProVision, Aviat’s leading network management software, MTN Ghana can now administer its wireless backhaul efficiently and effectively with a reduced level of manpower.

  • April 5, 2013

Possibly the World’s Oldest Microwave Link Still in Service

John Lennon was still alive when Aviat's oldest microwave link first went operational in 1980.

John Lennon was still alive when Aviat’s oldest microwave link first went operational in 1980. Photo credit: Roy Kerwood / Foter.com / CC BY

The year was 1980. The Americans beat the Russians for the Olympic gold medal in hockey. John Lennon of The Beatles was killed. Mount St. Helens erupted. The Soviet Union had just invaded Afghanistan. Ronald Reagan was elected president. The hostages were still in Iran. People asked themselves, “Who shot J.R.?” and caught Pac-Man fever. Voyager 1 flew by Saturn and left the solar system. The Empire struck back. John Belushi and Dan Aykroyd were on a “mission from God.” The Clash came calling on London. Led Zeppelin broke up. And Farinon Electric, Aviat Networks’ direct predecessor, put into service a series of analog microwave radio hops for the Canadian province of Nova Scotia’s Department of Natural Resources. The radios in question were the SS2000 model.

The province used them to carry government data traffic for firefighters and police, where data bits were stuffed into 4kHz voice channels. Remarkably, 33 years later, three hops of these SS2000 radios are still in operation, making these, quite possibly, the world’s oldest continuously in-service microwave links.

Farinon SS2000 analog microwave radio transmitters (but not entire units) were available for sale on eBay as recently as 2011! How’s that for longevity?!

Offering 120, 300 or 600 voice channels on the old 2GHz band, SS2000 radios were considered cutting-edge technology at the time—check out their cool retro-style data sheet—and highly reliable with their ability to provide microwave links despite the challenging weather and difficult propagation conditions of Nova Scotia—snow, ice, sleet, fog…they have it all! As proof, four other SS2000 radio hops were recently decommissioned and found to still be working up to spec as per the original, accepted level of performance. Then there was someone selling SS2000 radios on eBay in 2011!

But we challenge you, our loyal blog readers, to tell us of any even older microwave links that have been in operation for more than 33 years. So if you have an Aviat Networks link, or that from a predecessor company, which is still operating today and was installed before 1980, please comment! We want to hear from you!

  • February 8, 2013

Microwave Backhaul Helps Save Lives in Aviation

English: Auckland International Airport as see...

Auckland International Airport serves a vital role in the aviation industry, and Airways New Zealand and Aviat Networks upgraded its communications network to help maintain it. (Photo credit: Wikipedia)

Few could disagree that aviation remains one of the most vital global industries, due to its capability for transporting goods, people and even ideas thousands of miles in a span of a few hours. Fewer still could argue that aviation is also one of the industries most fraught with danger from equipment failure and human error. Safety is paramount, and clear, continuous communications between airplanes and ground control personnel is at the top of the list for maintaining safety.

What follows is a case study of how an airport traffic solutions provider, Airways New Zealand, expanded airport communications at Auckland International Airport to increase safety with help from Aviat Networks. Together, they implemented five-nines availability microwave radio solutions and futureproof element management system software that will meet the airport’s communications needs for at least the next 10 to 15 years. And all while implementing the network, no disruptions occurred to ongoing airport operations. Overall, the mission-critical communications system of the airport has been enhanced to a failsafe level of readiness.

  • September 28, 2012

Simplifying Carrier Ethernet Networks Scalability and Operations

Aviat microwave radios help overcome scale and complexity of Carrier Ethernet technology

As symbolized at the recent EANTC interoperability testing event, Aviat microwave radios can help solve the complexity and scalability problems of Carrier Ethernet technology.

Carrier Ethernet (CE) transport networks are growing in both scale and complexity, requiring both vendors and operators to deliver solutions to sustain their growth. To help address this, Aviat Networks recently participated in the European Advanced Networking Testing Center’s (EANTC) annual multi-vendor interoperability testing event to validate several aspects of scaling CE networks, among other things.

Increasing CE network sizes increase the complexity of management—especially from a services perspective—when CE services span multiple network domains. The ability to partition management domains and effectively manage alarms that accurately identify and propagate notification of network faults, dramatically speeds up the fault isolation and resolution process across large networks. Utilizing and effectively implementing “Hierarchical Service OAM” in growing CE networks is valuable to overcoming this challenge and was a key area of the recent interoperability testing.

Another critical aspect of growth is dealing with multi-technology—not just multi-vendor—interoperability. As CE networks scale, there is an increasing mix of Ethernet switching, MPLS and, most recently, MPLS-TP internetworking emerging. One potentially complex area that was also tested was validating the operation and survivability of intersecting Ethernet and MPLS-TP rings in a multi-homed topology. The “ERPSv2 and VPLS Interworking” test validated that standards-based G.8032 Ethernet protected rings and MPLS-TP VPLS rings can interoperate, or more significantly “co-operate,” to allow complex multi-technology networks to deliver reliable end-to-end services.

To learn about these aspects of scaling and dealing with complex CE networks check out the EANTC white paper for more details.

Errol Binda
Sr. Product and Solutions Marketing Manager
Aviat Networks

  • Differences Between VPLS and MPLS (differencebetween.net)
  • World first for Australian Carrier—MEF certification for MW (vertel.com.au)
  • LTE – Lessons Learned So Far (aviatnetworks.com)
  • Wrap Up of Carrier Ethernet World Asia Pacific (aviatnetworks.com)
  • Aviat Networks Partners with AT&T Government Solutions for Department of Homeland Security Business (virtual-strategy.com)
  • August 3, 2012

Innovative Microwave Radio Installation Helps Maintain Aboriginal Lands

MIMP mobile microwave radio infrastructure

Scale of MIMP’s mobile microwave radio infrastructure can be gauged by observing the installer at the very top of the 25-meter radio mast.

In the past, we have seen microwave radio installations at zoos, auto races, and on mountaintops reached by funicular and other one-of-a-kind implementations. This time, one of our partners, MIMP Connecting Solutions of South Australia, is in the process of completing an installation that is at the same time completely novel and tremendously important in the struggle to preserve indigenous cultures.

Currently, MIMP is rolling out microwave backhaul for the Australia Pacific LNG (APLNG) liquefied natural gas joint venture in Queensland, Australia. However, in Queensland, and other parts of Australia, legislation in recent years such as the Aboriginal Cultural Heritage Act 2003 has sought to preserve culturally significant Aboriginal places from development. This impacts the installation of the APLNG microwave backhaul network because conventional radio sites cannot be constructed under the auspices of this legislation on protected Aboriginal land.

  • July 17, 2012

Diversity, Hot Standby and Alarms for Wireless Backhaul—Oh My!

Microwave radio relay tower on Cimetta mountai...

(Photo credit: LittleJoe via Wikipedia)

Do not be Alarmed by this latest video in the Radio Head Technology Series (complimentary registration). For the insider’s perspective on Hot Standby, we will not keep you waiting. Dick Laine, Aviat Networks’ principal engineer, has many informed views on Diversity and relates them in his familiar relaxed presentation style.

All puns aside, Dick covers the multitude of options available in Diversity Schemes (and all their acronyms!). Plus, there is a lot to know about the differences in asymmetrical splitters for digital radios and their analog predecessors. Turns out there is no point in using symmetrical splitters in digital microwave radios. Even a heavily asymmetrical split provides as much protection as a symmetrical split but it avoids 2-3 dB in fade margin losses, providing significantly more uptime.

And if there is anything you need to know about Alarms, Dick takes a fine-toothed comb to the subject and teases out the details, providing context for the strategy of how they function in keeping your wireless communication network online. Dick will also tell you how improvement in digital radios has led to large gains in recovery time when radios in a Hot Standby arrangement are switched and quadrature relock can now essentially be avoided. On errorless switching, although it has greatly benefitted microwave radio usage, Dick will tell you the importance of early warning alarms to it.

So make no mistake, Dick is your information source for all things microwave radio—wrap your head around it!

  • June 12, 2012

Record 180 km Hybrid Diversity IP Microwave Link

Survey view from Belize toward Honduras, at 1000 m AMSL

Survey view from Belize toward Honduras, at 1000 m AMSL

Link between Honduras and Belize Crosses Water and Land

Last year I wrote about the world’s longest all-IP microwave link, stretching 193 km over the Atlantic Ocean in Honduras. Aviat Networks and Telecomunicaciones y Sistemas S.A. (TELSSA) designed and implemented this link together. This year, Aviat Networks and TELSSA again worked together to build another link and achieve another record—an Eclipse microwave link between Honduras and Belize that crosses 75 km of the Atlantic Ocean and 105 km of rugged terrain for a total path length of 180 km. This is a new world record for a hybrid diversity microwave link!

After the success of implementing the 193km link over water, Aviat Networks and TELSSA were eager to meet the challenge to connect Honduras and the neighboring nation of Belize using a single microwave link. Aviat Networks network engineers and TELSSA engineers were able to use their extensive knowledge of local propagation conditions, thorough understanding of long path design principles and precise installation practices to successfully implement this 180km microwave link.

Long Path Design Considerations

As outlined in the article last year for the longest all-IP hop, a deep understanding of path design considerations and experience in microwave transmission path design are necessary to successfully complete a long path design. Key considerations involved:

  • The effect of antenna diameter on highly refractive paths
  • Precise alignment of the antennas to mitigate the effect of refractivity
  • Optimum RF and space diversity spacing to counter elevated divergent dielectric layers
  • Deterministic prediction of the variations of atmospheric conditions
  • Multi-path propagation delay

To read more about this world-record Hybrid Diversity IP microwave link, download the full article.

Ivan Zambrano
Senior Network Engineer
Aviat Networks

  • May 25, 2012

Five-Nines Availability and RCA’s Top Secret Communication Project

You may not think that 78 rpm records and microwave communications could have anything in common. But our Dick Laine finds the devil in the details between the two in Radio Heads video No. 3. (Picture: label for 1940s brand of jukebox needles for playing 78 rpm records; photo credit, Infrogmation via Wikipedia)

Five-nines (99.999 percent) availability is a concept that is familiar in wireless engineering. Dick Laine, principal engineer of Aviat Networks, compares five-nines availability to 78-rpm records in our most recent episode of the Radio Head Technology Series.

As he relates, even with scratches and pops, a 78-rpm record still is able to transfer aural information so that you can hear it, i.e., its availability is intact, as it does not drop performance. Scratches and pops only represent degradation in the quality of communication. But when the record is broken, an outage occurs—no record, no communication.

The same goes for wireless communication systems. If a microwave link drops 315 or fewer seconds of microwave communications per year (in increments of up to 10 seconds at a time), it is maintaining five-nines availability. The microwave link is offering 99.999 percent availability for wireless backhaul. Only if the microwave link is unavailable for more than 10 seconds has an outage occurred, for the purposes of determining if microwave communications traffic has been dropped.

Dick goes on to explain about what happened in 1949 when 78-rpm records were superseded by 45-rpm records. Dick got a sneak peek at the top-secret 45-rpm record project when he visited the legendary RCA facility in Camden, New Jersey, which played a crucial role in the development of the modern music, radio and television businesses. Unfortunately, unlike a five-nines microwave link, 78-rpm and 45-rpm records are mostly unavailable nowadays.

  • May 11, 2012

3 Models for Microwave Link Error Performance? Laine Explains

Dick Laine explains ITU-R models

In the second episode of Aviat Networks’ Radio Head Technology Series, Principal Engineer Dick Laine explains ITU-R models for Fixed Wireless Systems.

As most radio engineers know, Vigants calculations, which are discussed in a broadly cited Bell System Technical Journal article, are widely used to determine reliability or error performance for microwave link design. In Video 2 of Aviat Networks’ popular Radio Head Technology Series, which is now available for viewing, Principal Engineer Dick Laine explains how he uses Vigants calculations in conjunction with the three completely separate ITU-R Fixed Wireless System (FWS) models for TDM.

Because of all these models, he likes to use Vigants calculations as a “sanity check” to see that he is close to the correct result for his path engineering plans. The free Aviat Networks’ Starlink wireless path engineering tool can be used to handle Vigants calculations for Aviat Networks’ and other vendors’ equipment.

Can’t wait to hear more of Dick’s experienced views on microwave radio transmission engineering? You can get ahead of the learning curve by registering for the series and get these videos sent to your inbox as soon as they are released.

Subscribe to our newsletter