July 18, 2013
The Golden Gate Bridge South Tower shows the Aviat microwave radio installation directly in between the suspension cables. Photo credit: davidyuweb / Foter / CC BY-NC-ND
Frank Sinatra, “Old Blue Eyes,” would have been the perfect pitchman for Aviat Networks. From Los Angeles to Chicago to New York, Sinatra’s many hit songs were inspired by the big cities of America. Since the time Sinatra began his illustrious singing career, Aviat Networks (formerly Harris Microwave Communications Division) has been setting the bar high for superior performance, wireless microwave communication across the United States, from sea to shining sea.
With big cities come big landmarks. You know that enormous “HOLLYWOOD” sign on Mt. Lee in Los Angeles? Aviat is there.
And how about the panoramic Golden Gate Bridge in San Francisco? Yes, Aviat is there, too. Aviat Networks is “Designed, Built and Supported in the USA,” as well as proudly deployed among the most prominent and historic locales in America.
You can find Aviat microwave on the side of beautiful Niagara Falls, as well as scraping the sky on the Sears Tower (now Willis Tower) in Chicago—that “toddling town.”
Right through the heart of “New York, New York,” Aviat radios are installed within the electric ambiance of Times Square and atop the soaring Empire State Building.
Even outside the urban corridors of America, Aviat is there. For example, Aviat equipment is deployed at the Hoover Dam in the Black Canyon along the Colorado River.
You may say “so what?” Well, the beauty of it all is that while you’re taking in everything the USA has to offer in its rich collection of historic landmarks, you’ve never noticed the technology that helped shape modern telecommunications networks is operating reliably, flawlessly right at your side.
Aviat Networks continues to take flight in new locations across the globe, and we are doing it the American way!
Louis Scialabba
Manager, Solutions Marketing
Aviat Networks
September 28, 2012
As symbolized at the recent EANTC interoperability testing event, Aviat microwave radios can help solve the complexity and scalability problems of Carrier Ethernet technology.
Carrier Ethernet (CE) transport networks are growing in both scale and complexity, requiring both vendors and operators to deliver solutions to sustain their growth. To help address this, Aviat Networks recently participated in the European Advanced Networking Testing Center’s (EANTC) annual multi-vendor interoperability testing event to validate several aspects of scaling CE networks, among other things.
Increasing CE network sizes increase the complexity of management—especially from a services perspective—when CE services span multiple network domains. The ability to partition management domains and effectively manage alarms that accurately identify and propagate notification of network faults, dramatically speeds up the fault isolation and resolution process across large networks. Utilizing and effectively implementing “Hierarchical Service OAM” in growing CE networks is valuable to overcoming this challenge and was a key area of the recent interoperability testing.
Another critical aspect of growth is dealing with multi-technology—not just multi-vendor—interoperability. As CE networks scale, there is an increasing mix of Ethernet switching, MPLS and, most recently, MPLS-TP internetworking emerging. One potentially complex area that was also tested was validating the operation and survivability of intersecting Ethernet and MPLS-TP rings in a multi-homed topology. The “ERPSv2 and VPLS Interworking” test validated that standards-based G.8032 Ethernet protected rings and MPLS-TP VPLS rings can interoperate, or more significantly “co-operate,” to allow complex multi-technology networks to deliver reliable end-to-end services.
To learn about these aspects of scaling and dealing with complex CE networks check out the EANTC white paper for more details.
Errol Binda
Sr. Product and Solutions Marketing Manager
Aviat Networks
July 17, 2012
Do not be Alarmed by this latest video in the Radio Head Technology Series (complimentary registration). For the insider’s perspective on Hot Standby, we will not keep you waiting. Dick Laine, Aviat Networks’ principal engineer, has many informed views on Diversity and relates them in his familiar relaxed presentation style.
All puns aside, Dick covers the multitude of options available in Diversity Schemes (and all their acronyms!). Plus, there is a lot to know about the differences in asymmetrical splitters for digital radios and their analog predecessors. Turns out there is no point in using symmetrical splitters in digital microwave radios. Even a heavily asymmetrical split provides as much protection as a symmetrical split but it avoids 2-3 dB in fade margin losses, providing significantly more uptime.
And if there is anything you need to know about Alarms, Dick takes a fine-toothed comb to the subject and teases out the details, providing context for the strategy of how they function in keeping your wireless communication network online. Dick will also tell you how improvement in digital radios has led to large gains in recovery time when radios in a Hot Standby arrangement are switched and quadrature relock can now essentially be avoided. On errorless switching, although it has greatly benefitted microwave radio usage, Dick will tell you the importance of early warning alarms to it.
So make no mistake, Dick is your information source for all things microwave radio—wrap your head around it!
June 12, 2012
Link between Honduras and Belize Crosses Water and Land
Last year I wrote about the world’s longest all-IP microwave link, stretching 193 km over the Atlantic Ocean in Honduras. Aviat Networks and Telecomunicaciones y Sistemas S.A. (TELSSA) designed and implemented this link together. This year, Aviat Networks and TELSSA again worked together to build another link and achieve another record—an Eclipse microwave link between Honduras and Belize that crosses 75 km of the Atlantic Ocean and 105 km of rugged terrain for a total path length of 180 km. This is a new world record for a hybrid diversity microwave link!
After the success of implementing the 193km link over water, Aviat Networks and TELSSA were eager to meet the challenge to connect Honduras and the neighboring nation of Belize using a single microwave link. Aviat Networks network engineers and TELSSA engineers were able to use their extensive knowledge of local propagation conditions, thorough understanding of long path design principles and precise installation practices to successfully implement this 180km microwave link.
Long Path Design Considerations
As outlined in the article last year for the longest all-IP hop, a deep understanding of path design considerations and experience in microwave transmission path design are necessary to successfully complete a long path design. Key considerations involved:
To read more about this world-record Hybrid Diversity IP microwave link, download the full article.
Ivan Zambrano
Senior Network Engineer
Aviat Networks
May 25, 2012
Five-nines (99.999 percent) availability is a concept that is familiar in wireless engineering. Dick Laine, principal engineer of Aviat Networks, compares five-nines availability to 78-rpm records in our most recent episode of the Radio Head Technology Series.
As he relates, even with scratches and pops, a 78-rpm record still is able to transfer aural information so that you can hear it, i.e., its availability is intact, as it does not drop performance. Scratches and pops only represent degradation in the quality of communication. But when the record is broken, an outage occurs—no record, no communication.
The same goes for wireless communication systems. If a microwave link drops 315 or fewer seconds of microwave communications per year (in increments of up to 10 seconds at a time), it is maintaining five-nines availability. The microwave link is offering 99.999 percent availability for wireless backhaul. Only if the microwave link is unavailable for more than 10 seconds has an outage occurred, for the purposes of determining if microwave communications traffic has been dropped.
Dick goes on to explain about what happened in 1949 when 78-rpm records were superseded by 45-rpm records. Dick got a sneak peek at the top-secret 45-rpm record project when he visited the legendary RCA facility in Camden, New Jersey, which played a crucial role in the development of the modern music, radio and television businesses. Unfortunately, unlike a five-nines microwave link, 78-rpm and 45-rpm records are mostly unavailable nowadays.
May 11, 2012
In the second episode of Aviat Networks’ Radio Head Technology Series, Principal Engineer Dick Laine explains ITU-R models for Fixed Wireless Systems.
As most radio engineers know, Vigants calculations, which are discussed in a broadly cited Bell System Technical Journal article, are widely used to determine reliability or error performance for microwave link design. In Video 2 of Aviat Networks’ popular Radio Head Technology Series, which is now available for viewing, Principal Engineer Dick Laine explains how he uses Vigants calculations in conjunction with the three completely separate ITU-R Fixed Wireless System (FWS) models for TDM.
Because of all these models, he likes to use Vigants calculations as a “sanity check” to see that he is close to the correct result for his path engineering plans. The free Aviat Networks’ Starlink wireless path engineering tool can be used to handle Vigants calculations for Aviat Networks’ and other vendors’ equipment.
Can’t wait to hear more of Dick’s experienced views on microwave radio transmission engineering? You can get ahead of the learning curve by registering for the series and get these videos sent to your inbox as soon as they are released.