April 13, 2012
United States radio spectrum frequency allocations chart. The FCC has freed 650 MHz of spectrum to increase sharing possibilities for 7GHz and 13GHz bands. (Photo credit: United States Department of Commerce employee via Wikipedia)
As we blogged last summer, the FCC has released 650 MHz of new wireless technology spectrum for Fixed Service wireless communication technology operators. Now Comsearch, a leading provider of spectrum management and wireless engineering services in the US, has highlighted this issue in its latest online newsletter, with an article that includes some very informative coverage maps showing the zones where the new bandwidth is available.
These maps are excellent at conveying the limitations of the newly released spectrum for microwave link applications in the 7 GHz (6.875–7.125) and 13 GHz (12.7–13.1) bands. After taking into account the zones that are reserved for existing Fixed and Mobile Broadcast Auxiliary Service (BAS) and the Cable TV Relay Service (CARS) users, these new bands are only available in about 50 percent of the US land mass covering only 10 percent of the population.
What do you think? Should the FCC loosen the spectrum sharing rules even more for 7GHz and 13GHz bands? Take our poll and tell us:
March 23, 2012
The ECC held a meeting in March to further consider updating regulations to allow the use of asymmetrical links in microwave backhaul (Photo credit: blese via flickr)
Last autumn we wrote about potential plans from a microwave competitor regarding using asymmetric band plans for point to point microwave communication links. To update this topic, we have put 10 things in parentheses that you should know about the current status of asymmetrical links in wireless backhaul. Last month at an Electronic Communications Committee SE19 (Spectrum Engineering) meeting this microwave technology subject was discussed again. (1) The proposal under consideration has been reduced in scope and (2) the regulators present still wish to see more evidence regarding the need for change before agreeing to such significant amendments.
Asymmetric Band Plan Altered
A quick reminder of what was originally requested back in the autumn of 2011; a move from channel sizes of 7, 14, 28 and 56MHz to channel sizes of 7, 14, 21, 28, 35, 42, 49 and 56MHz in order to support different granularities of channel widths in all bands from L6GHz to 42GHz. However in March these proposals were altered to reflect channel sizes of 7, 14, 28 and 56MHz (i.e., no change to existing channel sizes) and asymmetric only in the 18GHz band and above.
The national regulatory authorities stated that even the (3) revised proposal cannot be accommodated with existing planning tools so they cannot imagine asymmetric links being deployed alongside existing links in their countries. A few stated that in block allocated spectrum the owner of the spectrum may be able to implement this channelization, but Aviat Networks believes that (4) the complexity of coordinating links even in block allocated spectrum should not be underestimated.
Saving Spectrum?
Traditionally, links are planned on an equal bandwidth basis, e.g., 28MHz + 28MHz, with a constant T/R spacing throughout the band in question. This new proposal would see links of 28MHz + 7MHz and furthermore makes the claim that spectrum would be saved. Numerically speaking this arrangement would save 21MHz for each pair, but (5) saved spectrum is only of value if it is reused. In many cases the “saved” spectrum would be orphaned due to difficulties coordinating it into usable pairs.
Asymmetric Channel Plan Limits Future
In our last blog on this topic we reflected on the fact that while there is some level of asymmetry today, (6) this trend may well be balanced in the near future by cloud services and other services that involve the user uploading content. We believe that (7) committing to an asymmetric channel plan now limits the future. (8) Symmetric channel planning allows networks to dynamically adjust to changing demands. A related concern is the fact that (9) spectrum once reallocated may not be easily clawed back to create symmetric pairs in the future. While some applications are experiencing asymmetry in traffic presently, we should not forget that some traffic patterns are still symmetric and where asymmetry is a feature, (10) the scale of this phenomenon may be overstated. Indeed, a major European operator present at the SE19 meeting voiced skepticism about the need for asymmetric support.
What do you think? Will mobile traffic remain or increasingly become asymmetric? Are asymmetric microwave links needed or can they be practically deployed in existing bands? Answer our poll below and tell us. Select all answers that apply.
Ian Marshall
Regulatory Manager
Aviat Networks
March 15, 2012
To compare how different wireless backhaul network topologies perform under the same operating scenario, let’s analyze how a traditional hub-and-spoke and a ring configuration compare in connecting the same six sites (See table below). For the hub-and-spoke configuration, each cell site is provided 50 Mbps capacity in 1+1 protection. With five links and no path diversity, full protection is the only way to achieve five nines reliability. In this configuration, 10 antennas are employed, which average a large and costly 5.2 feet in diameter. Total cost of ownership for this six-site network is close to $700,000 for five years.
For a ring design for the same six sites, throughput of 200 Mbps is established to carry the traffic for each specific hop and any traffic coming in that direction from farther up the network. Designed to take advantage of higher-level redundancy schemes, the ring configuration only requires antennas that average 2.3 feet in diameter, which are much lower in cost compared to the antennas in the hub-and-spoke configuration. And even though the ring configuration requires 12 antennas and six links, its overall TCO amounts to a little under $500,000 over five years—30 percent less than TCO for the hub-and-spoke design for the same six sites.
This comparison is based upon deployments in the USA, where most operators lease tower space from other providers.
Gary Croke
Senior Product Marketing Manager
Aviat Networks
Related articles
December 21, 2011
Have you ever had an unusual experience at a microwave radio site?
Here’s one we would like to share with you. Aviat Networks Account Manager Mark Davis recently experienced an ascent of Mt. Pisgah in North Carolina (mid-Atlantic coast USA) in a cable car—climbing 3,600 feet in 11 minutes. The cable car is purpose-built to carry engineers to the TV broadcast tower on top of Mt. Pisgah, in this intance it transported 6-ft antennas and Aviat Networks radio gear. The microwave radio installation will connect U.S. National Park Service offices along the entire Blue Ridge Parkway.
Check out the video:
We are sure there are many more interesting examples of radio installations out there. Post comments below or email us your story or images. We want to hear from you!
August 23, 2011
Rain fading (also referred to as rain attenuation) at the higher microwave frequencies (“millimeter wave” bands) has been under study for more than 60 years. Much is known about the qualitative aspects, but the problems faced by microwave transmission engineers—who must make quantitative estimates of the probability distribution of the rainfall attenuation for a given frequency band as a function of path length and geographic area—remains a most interesting challenge, albeit now greatly assisted by computer rain models.
A surprising piece of the puzzle is that the total annual rainfall in an area has almost no correlation to the rain attenuation for that area. A day with one inch of rainfall may have a path outage due to a short period of extremely high localized rain cell intensity, while another day of rain may experience little or no path attenuation because rain is spread over a long period of time, or the high intensity rain cell could miss the microwave hop completely.
Over the years, we have learned a lot about deploying millimeter wave microwave hops for our customers:
More information about assessing rain-induced attenuation is available in our white paper, Rain Fading in Microwave Networks.
July 22, 2011
Microwaves are as old as the beginning of the universe. Well, they’ve been around for at least 13.7 billion years—very close to the total time since the Big Bang, some 14 billion years ago. However, we don’t want to go that far back in covering the history of microwave communications.
Having just observed the 155th anniversary of the birth of Nikola Tesla, arguably the most important inventor involved in radio and wireless communications, this is a good time to take a broader view of the wireless industry. If you have been in the wireless transmission field for some time, you are probably familiar with Dick Laine, Aviat Networks‘ principal engineer. He has taught a wireless transmission course for many years—for Aviat Networks and its predecessor companies.
The embedded presentation below comes from one of those courses. In a technological field filled with such well-educated scientists and engineers from some of the finest universities and colleges, it’s hard to believe that microwave solutions and radio itself started in so much controversy by men who were in many cases self-taught. Dick’s presentation goes over all of this in a bit more detail. Hopefully, it’s enough to whet your appetite to find out more. If you like the presentation, consider hearing it live or another lecture series on wireless transmission engineering at one of our open enrollment training courses.