April 27, 2023
When it comes to purchasing new equipment for your business, finding the right financing solution is crucial. Not only can financing help you preserve your cash reserves, but it can also allow you to spread the cost of equipment purchases out over time and take advantage of tax benefits.
April 13, 2023
In today's fast-paced world, high-speed internet connectivity is crucial for businesses. To keep their networks operational, service providers must efficiently deploy microwave links. Unfortunately, backorders from manufacturers often create challenges, negatively affecting business growth and scalability.
July 7, 2017
By Ramon Morales, NOC Operations Team, US
It’s 2:30 AM Saturday morning and the phone rings dragging you out of a deep sleep. Groggily you answer the phone and a voice at the end of the line is alerting you that the communication system is in alarm and traffic is down. While trying to figure out what’s going on, you remember you are the person responsible for your company’s communication infrastructure.
June 7, 2017
There’s no one-size-fits-all in microwave. Each radio architecture comes with tradeoffs, so you need to weigh the choices in each segment of the network to get the right product mix for your business. To determine your best solution, first establish your requirements from a capacity, reliability, operational, and cost perspective. Then choose the right product. Microwave’s major technologies include the following.
May 25, 2017
By Ramon Morales, NOC Operations Team, US
Do you remember the last time your blood pressure was checked? I remember staring at the results wondering what the numbers meant. Usually my thoughts are, “Great, does this mean I’m healthy or should I be concerned?”
Recently, one of our customers had a similar experience with an email received from our customer service group. The customer’s initial impression was that the content received was vague and meaningless. “What am I supposed to do with this information?”, the customer asked.
June 12, 2012
Link between Honduras and Belize Crosses Water and Land
Last year I wrote about the world’s longest all-IP microwave link, stretching 193 km over the Atlantic Ocean in Honduras. Aviat Networks and Telecomunicaciones y Sistemas S.A. (TELSSA) designed and implemented this link together. This year, Aviat Networks and TELSSA again worked together to build another link and achieve another record—an Eclipse microwave link between Honduras and Belize that crosses 75 km of the Atlantic Ocean and 105 km of rugged terrain for a total path length of 180 km. This is a new world record for a hybrid diversity microwave link!
After the success of implementing the 193km link over water, Aviat Networks and TELSSA were eager to meet the challenge to connect Honduras and the neighboring nation of Belize using a single microwave link. Aviat Networks network engineers and TELSSA engineers were able to use their extensive knowledge of local propagation conditions, thorough understanding of long path design principles and precise installation practices to successfully implement this 180km microwave link.
Long Path Design Considerations
As outlined in the article last year for the longest all-IP hop, a deep understanding of path design considerations and experience in microwave transmission path design are necessary to successfully complete a long path design. Key considerations involved:
To read more about this world-record Hybrid Diversity IP microwave link, download the full article.
Ivan Zambrano
Senior Network Engineer
Aviat Networks
May 11, 2012
In the second episode of Aviat Networks’ Radio Head Technology Series, Principal Engineer Dick Laine explains ITU-R models for Fixed Wireless Systems.
As most radio engineers know, Vigants calculations, which are discussed in a broadly cited Bell System Technical Journal article, are widely used to determine reliability or error performance for microwave link design. In Video 2 of Aviat Networks’ popular Radio Head Technology Series, which is now available for viewing, Principal Engineer Dick Laine explains how he uses Vigants calculations in conjunction with the three completely separate ITU-R Fixed Wireless System (FWS) models for TDM.
Because of all these models, he likes to use Vigants calculations as a “sanity check” to see that he is close to the correct result for his path engineering plans. The free Aviat Networks’ Starlink wireless path engineering tool can be used to handle Vigants calculations for Aviat Networks’ and other vendors’ equipment.
Can’t wait to hear more of Dick’s experienced views on microwave radio transmission engineering? You can get ahead of the learning curve by registering for the series and get these videos sent to your inbox as soon as they are released.
April 13, 2012
United States radio spectrum frequency allocations chart. The FCC has freed 650 MHz of spectrum to increase sharing possibilities for 7GHz and 13GHz bands. (Photo credit: United States Department of Commerce employee via Wikipedia)
As we blogged last summer, the FCC has released 650 MHz of new wireless technology spectrum for Fixed Service wireless communication technology operators. Now Comsearch, a leading provider of spectrum management and wireless engineering services in the US, has highlighted this issue in its latest online newsletter, with an article that includes some very informative coverage maps showing the zones where the new bandwidth is available.
These maps are excellent at conveying the limitations of the newly released spectrum for microwave link applications in the 7 GHz (6.875–7.125) and 13 GHz (12.7–13.1) bands. After taking into account the zones that are reserved for existing Fixed and Mobile Broadcast Auxiliary Service (BAS) and the Cable TV Relay Service (CARS) users, these new bands are only available in about 50 percent of the US land mass covering only 10 percent of the population.
What do you think? Should the FCC loosen the spectrum sharing rules even more for 7GHz and 13GHz bands? Take our poll and tell us:
March 15, 2012
To compare how different wireless backhaul network topologies perform under the same operating scenario, let’s analyze how a traditional hub-and-spoke and a ring configuration compare in connecting the same six sites (See table below). For the hub-and-spoke configuration, each cell site is provided 50 Mbps capacity in 1+1 protection. With five links and no path diversity, full protection is the only way to achieve five nines reliability. In this configuration, 10 antennas are employed, which average a large and costly 5.2 feet in diameter. Total cost of ownership for this six-site network is close to $700,000 for five years.
For a ring design for the same six sites, throughput of 200 Mbps is established to carry the traffic for each specific hop and any traffic coming in that direction from farther up the network. Designed to take advantage of higher-level redundancy schemes, the ring configuration only requires antennas that average 2.3 feet in diameter, which are much lower in cost compared to the antennas in the hub-and-spoke configuration. And even though the ring configuration requires 12 antennas and six links, its overall TCO amounts to a little under $500,000 over five years—30 percent less than TCO for the hub-and-spoke design for the same six sites.
This comparison is based upon deployments in the USA, where most operators lease tower space from other providers.
Gary Croke
Senior Product Marketing Manager
Aviat Networks
Related articles
August 23, 2011
Rain fading (also referred to as rain attenuation) at the higher microwave frequencies (“millimeter wave” bands) has been under study for more than 60 years. Much is known about the qualitative aspects, but the problems faced by microwave transmission engineers—who must make quantitative estimates of the probability distribution of the rainfall attenuation for a given frequency band as a function of path length and geographic area—remains a most interesting challenge, albeit now greatly assisted by computer rain models.
A surprising piece of the puzzle is that the total annual rainfall in an area has almost no correlation to the rain attenuation for that area. A day with one inch of rainfall may have a path outage due to a short period of extremely high localized rain cell intensity, while another day of rain may experience little or no path attenuation because rain is spread over a long period of time, or the high intensity rain cell could miss the microwave hop completely.
Over the years, we have learned a lot about deploying millimeter wave microwave hops for our customers:
More information about assessing rain-induced attenuation is available in our white paper, Rain Fading in Microwave Networks.