In recent years the microwave industry has made great progress in capacity evolution – actually we’ve seen somewhere in the neighborhood of 30 times increase in microwave capacity over the past 10 years. In doing so, microwave has proven itself to meet the capacity of LTE and LTE-A applications and with some new evolutions to enable multi-gigabit links, is now well positioned for 5G as well.
Read MoreAviat: The American Microwave Company and The Trusted Choice for State-Wide Microwave Networks
Aviat is the #1 provider of microwave and microwave routing systems to state/local government networks nationwide with 25 of 50 state-wide networks running Aviat equipment.
Read MoreWith the goal of a hyper-meshed 5G street level network, clearly today’s small cell deployments represent just an interim phase in a progressive network densification—pushing the network outward. This means today’s small cell sites will become tomorrow’s macrocells, or hub sites.
Future-looking mobile operators have planned for this eventuality. In the developed world, small cell and the Internet of Things (IoT) drive mobile network densification. However, in the developing world the primary goal of enterprise connectivity spurs network densification, due to lack of wireline infrastructure to business buildings. The end result of network densification is the same.
Read MoreAt a time in the not-so-distant past, there was only one way to implement microwave radio: one radio link per microwave terminal. Did not matter what type of link it concerned: protected, non-protected or multi-channel. From the advent of digital microwave radio in the 1980s and 1990s, terminals typically had no options for integration of co-located telecom devices. And to interconnect muxes or switches required external cabling and possibly a patch-panel.
Then in the early 2000s, so-called “nodal” radios came into vogue. Designed to address the drawbacks of the one-radio-one-link paradigm, a single microwave radio node could serve as a platform for multiple links. There were still limitations when it came to radio and switch interactions, but multiple sources of traffic could now be integrated and connected on the nodal platform.
Read MoreThe mobile phone industry has been mature for some time. Around the world, most people who want and are able to use a cellular handset already have one—sometimes more than one. Even with innovations such as HSPA+, LTE and LTE-A becoming mainstream, average revenue per user (ARPU) continues to decline. Mobile operators may be at the crossroads. They are certainly at an inflection point. How to counter the trend is what operators must decide.
Read MoreAre you considering building an ultra-low latency microwave network? Then you are not alone. Microwave is quickly becoming the default transport choice for low latency networks. However, building an ultra-low latency microwave network is not simple; there are many considerations. Latency through the “box” is important, but it is not the only factor, and too much focus on this metric may be a distraction. What is most important is end-to-end latency of the link. Aviat Networks recently addressed this topic in a webinar (registration required) and free presentation download and answered three very important questions regarding ultra-low latency microwave technology.
Also in this webinar, Travis Mitchell, Aviat Networks director of low latency business development, and Sergio Licardie, Aviat Networks senior director of systems engineering, consider the best practices for ultra-low latency microwave networks as they explore the techniques, technologies and design approaches necessary to ensure lowest end-to-end latency. They also discuss some innovations to look for in microwave networking to ensure continuous improvement in end-to-end latency performance. Other topics covered include:
Dick Laine, longtime principal engineer for Aviat Networks, delivers one of his patented presentations on microwave networking during an installment of the video blog Radio Head Technology Series.
Microwave radios come and microwave radios go, but the sage advice of Aviat Networks Principal Engineer, Dick Laine, has no end-of-life. In our seventh installment of the very popular video blog Radio Head Technology Series Dick talks about the diversity of diversity schemes and other protection methods available to microwave networking engineers.
Using examples from the radio legacy of Aviat Networks (e.g., Constellation, MegaStar—you must remember these, it hasn’t been that long) and our current microwave networking solutions (e.g., Eclipse, TRuepoint 6500, WTM 6000) he expounds on the past, present and future of protection. From Angle Diversity (one of the earliest diversity schemes used in Line-of-Sight digital microwave) to Hybrid Diversity (HD) and Frequency Diversity (that need licensing waivers to be used in many applications) to comparisons of fiber-like protection methods, Dick covers it all. For example, did you know that a four-dish HD antenna arrangement offers little to no performance improvement over a three-dish HD configuration?
So with free registration to the video series you can have the benefit of all of Dick’s wisdom and nonpareil presentation style on Diversity. You get access to all the earlier videos, too. (Did we mention there are six previous episodes?) And the presentation slides. And the podcast. And all for FREE! Wow! If you don’t see a topic that you think needs to be covered, feel free to submit your suggestion into our inbox. Register today!