• August 23, 2013

Should National Telecom Regulators Impose Buildout Requirements on Operators?

FCC-Ofcom-and-other-national-wireless-regulators-should-have-spectrum-use-it-or-lose-it-policy-says-microwave-vendor-Aviat-Networks-August-23-2013

Photo credit: fingle / Foter / CC BY-NC-SA

In the mobile operator space in many countries, the national regulators are imposing so-called “buildout requirements” as a license condition on many wireless providers. In some countries, these requirements are restricted to licenses awarded by the auction process (e.g., cellular access spectrum) or block allocations while in others these conditions are attached to the majority of licenses.

Where buildout requirements are employed, a license typically has a clause that requires the licensee to build out a network/link or specified portion of a network within a certain period of time, with penalties imposed for failure to do so.

The rationale behind imposing these requirements is to ensure that after spectrum is assigned it is put to its intended use without delay. By doing this, or so the theory goes, bidders are discouraged from acquiring spectrum with the sole intent of blocking competitors’ activities without themselves offering service. Of course, the ultimate goal is the protection of spectrum—a finite and precious resource. There is no reason buildout requirements cannot be attached to any license grant, assuming that the detail of the requirements recognizes any constraints of the application for which the spectrum is sought.

Nevertheless, Aviat Networks is strongly against auctions and block allocations, but where these are a necessity then buildout requirements must be part of any award, with strong enforcement rules. The problem is that with strong enforcement operators and regulators can be at loggerheads and get tied up in court with lawsuits and countersuits for years. For example, in the U.S. you have the case of Fibertower. The FCC claims that Fibertower deliberately underbuilt its network and so moved to revoke its spectrum licenses. With the regulator moving against the operator, it came under insurmountable financial pressure and filed for bankruptcy. But even now, the operator’s creditors are fighting the FCC in order to recoup frequencies valued at more than US$100 million. So it is questionable whether this actually works in practice.

Microwave is the point
Focusing on point-to-point microwave, let’s examine the approach taken in two different countries. In the United States, for traditional link-by-link allocation, the FCC imposes an 18-month deadline by which time the link in question needs to be in service. However, in the United Kingdom, Ofcom imposes no such deadline. For certain applications, certain routes and sites are critical and can quickly become “full.” If these key locations are being filled by license applications that are not being translated into operational services, then this spectrum is effectively wasted as no one else can use it, nor is there any service being offered. Spectrum wasted in this manner reduces overall spectrum efficiency, and all spectrum authorities are motivated to ensure that spectrum is used in the most efficient way possible.

Of course having these rules is fine, but what happens when the rules are breached? In some cases, an operator will apply for an extension prior to the expiration of the original deadline; this may or may not be granted. However, the real test is what happens when the deadline passes. Ideally, what should happen is that the license(s) in question would be revoked and the associated spectrum made available for reallocation. Furthermore, if the spectrum in question was originally made available by block allocation or auction, then again, ideally, this spectrum should be returned to the pool of spectrum available for link-by-link licensing.

Additionally in shared bands, i.e., spectrum shared by the Fixed Service (FS) and the Fixed Satellite Service (FSS) should be governed by the same requirements in this instance. Therefore, unused/defunct FSS allocations/licenses should also be revoked with the spectrum being made available for reuse. In the case of FSS locations, this can have a significant effect owing to the geographic full-arc protection area that is usually associated with earth stations.

Counterpoint
The alternative viewpoint is that the current buildout requirements are counterproductive, in their aim to foster efficient use of spectrum. One reason cited for this view is that it takes time for an equipment supply ecosystem to develop, which will serve the spectrum users. However, when we examine this claim more carefully, it seems that this is often used where the spectrum has been awarded to a single user either by block allocation or by auction. We have written before about how auctions and block allocations are unsuitable for point-to-point microwave, and the claim above is a direct result of this process, which negatively impacts the number of operators. In turn, that reduces the ranks of equipment vendors, leading to thinner competition and, therefore, decreased incentive for innovation. This situation is made worse if the operator in question chooses a band plan that is nonstandard in terms of either existing U.S. or international arrangements.

Signal termination
In the final analysis, it does not serve any stakeholders’ goals to have valuable spectrum allocated but unutilized. Thus, having buildout requirements would appear to be a good idea. But along with that, an effective mechanism for reclaiming and making available to others spectrum that runs afoul of these rules is paramount to making the process work for the Greater Good. In Aviat’s view, buildout requirements are a valuable tool in ensuring spectrum efficiency and as such, their use should be seriously considered in all countries.

Ian Marshall
Regulatory Manager
Aviat Networks

  • July 11, 2013

LTE Backhaul: The View from Africa

Telecom-tower-Johannesburg-South-Africa-enabling-LTE-backhaul

Telecom Tower, Johannesburg, South Africa. Photo credit: Marc_Smith / Foter / CC BY

LTE has been moving more and more to the forefront in mobile cellular networks around the world. Africa, and particularly the Republic of South Africa, is the latest hotbed of LTE rollouts, with the leading country operators of Vodacom, MTN and Cell C coming online since late in 2012. In conjunction with these LTE access rollouts, our technical marketing manager in the region, Mr. Siphiwe Nelwamondo, has been authoring a series of columns on enabling LTE in a leading regional technology media Internet site, ITWeb Africa.

Naturally, his focus has been on backhaul. In the first installment of his series, Mr. Nelwamondo looked closely at the backhaul requirements of LTE. Chief among these requirements are speed, Quality of Service (QoS) and capacity. He concluded that it is too early to close the book on the requisite parameters for supporting LTE backhaul. Part two of the features, he examined the basis on which microwave provides the technical underpinnings for LTE backhaul—especially as related to capacity. More spectrum, better spectral efficiency and more effective throughput were Mr. Nelwamondo’s subpoints to increasing capacity.

Having more spectrum for microwave backhaul is always nice, but it’s a finite resource and other RF-based equipment from satellites to garage door openers is in competition for it. Bettering spectral efficiency may be accomplished by traditional methods such as ACM and might be increased through unproven-in-microwave techniques like MIMO. Throughput improvement has wide claims from the plausible low single digit percentage increases to the more speculative of upping capacity by nearly half-again. Data compression and suppression are discussed. The truth is LTE, while data-intensive, probably will not require drastic measures for backhaul capacity until at least the next stage of LTE-Advanced.

If indeed capacity increases are necessary in the LTE backhaul, number three and the most current piece of Mr. Nelwamondo’s contains additional information. Nothing is better than having something bigger than normal or having many of the standard model. As the analogy applies to LTE microwave backhaul, bigger or wider channels will increase capacity, of course. A larger hose sprays more water. Or if you have two or three or more hoses pumping in parallel that will also support comparatively more water volume. The same is true of multiple microwave channels.

However, the most truly and cost effective capacity hiking approach is proper network planning. Mr. Nelwamondo points out that in Africa—more than some places—mobile operators are involved in transitioning from TDM planning to IP planning. While TDM planning was dependent on finding the peak traffic requirement per link, IP planning allows the flexibility to anticipate a normalized rate of traffic with contingencies to “borrow” capacity from elsewhere in a backhaul ring network that is not currently being utilized. Along with several other IP-related features, this makes determining the capacity a lot more of a gray area. Some operators solve this by simply “over-dimensioning” by providing too much bandwidth for the actual data throughput needed, but most cannot afford to do this.

The fourth and final entry in Mr. Nelwamondo’s series will appear soon on other LTE backhaul considerations of which you may not have thought. Sign up below to be notified when it is available. [contact-form-7 404 "Not Found"]

  • July 3, 2013

If Microwave Didn’t Exist for Small Cells, We’d Have to Invent It!

FierceWireless-eBook-microwave-backhaul-being-reassessed-as-strategy-for-small-cell-LTE-traffic-aggregation-on-business-campuses

Microwave backhaul is being reassessed as a strategy for small cell LTE traffic aggregation on business campuses. Photo credit: cbmd / Foter.com / CC BY-NC-ND

Small cells get all the press! As LTE rolls out in networks on every continent except Antarctica, small cells are grabbing headlines in technology trades and geek fan-boy blogs across the Internet. They’ll be needed sooner or later to provide LTE access in all those places around corners of buildings on business campuses, in urban parks surrounded by concrete canyons and other inaccessible locations. But little or only passing thought is paid to the ways in which small cell traffic will be aggregated back to the main network.

However, in a new FierceWireless ebook, microwave backhaul is pointed out as one of the critical strategies to provide throughput for all the small cell traffic to come. Microwave was here before small cell. And it’s such a good fit for small cell, if it had not already existed, we’d have to invent it now! Our director of product marketing, Stuart Little, tells FierceWireless that microwave meets the capacity needs of LTE backhaul. And Fierce adds modern microwave technology is changing the perceptions of its use for small cell backhaul.

Neither sleet nor rain nor changing K factors at night will stop microwave from small cell service. Specifically, Little tells Fierce that rain has little to no effect on microwave at the lower frequencies, and where it does have some effect in the higher bands, different technical techniques can help mitigate it. To find out more about small cell microwave backhaul, we recommend any of the Aviat blogs and related articles below. Or just read the FierceWireless ebook.

  • June 26, 2013

The Problem with C-RAN is Fronthaul

Southeast USA at night: All these urban areas will need a small cell backhaul solution for LTE at some point. Will it be "fronthaul?"

Southeast USA at night: All these urban areas will need a small cell backhaul solution for LTE at some point. Will it be “fronthaul?” Photo credit: NASA’s Marshall Space Flight Center / Foter.com / CC BY-NC

With the mobile telecommunications space facing an onslaught of data-hungry subscribers and their migration to LTE, operators have embarked on a quest to pack even more service in smaller and smaller service areas. The frontier of these smaller service areas have come to be characterized as small cells. The issue is getting communications into and out of these small service areas. Capacity, coverage and interference all need to be addressed. Some have proposed serving small cells via Centralized Radio Access Networks (C-RAN). To implement a C-RAN, one of the requirements is a newer concept that has come to be termed “fronthaul.”

In a June 2013 meeting of the Telecom Council, Aviat Networks’ chief technology officer, Paul Kennard, took on fronthaul and the challenges it presents for LTE, small cell and C-RAN. In his presentation, he weighed the advantages and obstacles of fronthaul. While the chief advantage of distributing Remote Radio Heads (RRH) around the cell can help alleviate coverage, capacity and interference concerns, it is not easy to reach these RRH locations with fiber in the mostly urban areas where this deployment scenario will be needed most. This is especially true of non-traditional implementation of small cells on light standards, signposts and other non-tower infrastructure collectively known as “street furniture.” Wireless backhaul solutions will continue to be necessary in the grand scheme of things.

More is available on fronthaul in the Telecom Council presentation below as is in an associated webinar.

  • June 17, 2013

5.8GHz FCC Rule Change: Good or Bad?

Microwave-radio-wireless-fixed-services-Backhaul-link-FCC-5GHz-rule-change-would-be-detrimental-comment-by-June-24-2013

Photo credit: John “I’m…kind of…fun” L / Foter.com / CC BY-NC

In the United States, the fixed service for wireless communications usually operates in bands licensed either on a link-by-link basis or by block allocation. So why is the 5.8GHz ISM band so important and why should the industry be concerned about current FCC proposals to change the rules of operation in this band.

Many operators use this band because they can install and operate a link in a very short period—much quicker than the usual route of prior coordination and license application that is required in other bands. There are numerous reasons why this approach is attractive, even if it is difficult to guarantee Quality of Service (QoS) in ISM. A common use of this approach sees the operator set up a link in the 5.8GHz band to get the link up and running while in parallel it goes through the coordination process for the same link in the L6GHz band. Then when that license is granted, the operator will move the link to the L6GHz band. This has the advantage that the same antenna may be reused and sometimes the same radio with just a filter change. Another use of the 5.8GHz band for fixed service links is in support of disaster relief efforts where because there is no need for prior coordination that means vital communications links can be up and running very quickly.

Under the current FCC Part 15 rules, equipment can be certified using section 15.247 whereby the above scenarios are attractive to operators as they mimic the conditions that can be found in the L6GHz band. However, the FCC has issued a notice of proposed rulemaking, NPRM, which will change this by requiring a reduction in conducted output power of 1dB for every dB of antenna gain over 23dBi for Part 15.247 point-to-point links. At present, the conducted power at the antenna port in this frequency range is limited to 1 watt, but there is no penalty applied to the conducted power in relation to higher gain antennas on point-to-point links. Should this proposal by finalized then this would reduce the effective range of point-to-point links in this band and would so change the dynamics that the ability to deploy a link in the 5.8GHz band and then “upgrade” to the L6GHz band at a later date would no longer be a feasible option. We would encourage all readers, especially those using the 5.8GHz band to file a comment with the FCC regarding Proceeding 13-49 that this particular change would be detrimental to many fixed link operators, as well as those who rely on this band for fast deployment during disaster recovery.

For more information on this proceeding, email Aole Wilkins at the Office of Engineering and Technology.

Ian Marshall
Regulatory Manager
Aviat Networks

  • May 24, 2013

THE Mobile Marketplace: Towers, Small Cells and Backhaul

CTIA: The Wireless Association held its annual show in Las Vegas, May 21-23, 2013. Photo credit: @jbtaylor / Foter.com / CC BY

CTIA: The Wireless Association held its annual show in Las Vegas, May 21-23. Photo credit: @jbtaylor / Foter.com / CC BY

This week, Aviat Networks participated in the very well attended CTIA 2013 wireless and mobile trade show in Las Vegas. The theme for this year’s event was “THE Mobile Marketplace” with various areas of focus dealing with applications, devices and, of course, infrastructure. LTE, backhaul and small cells were once again important infrastructure-related topics during the event.

Aviat was a Platinum Sponsor of the Tower & Small Cell Summit—a sub-conference program composed of presentations, panels and case studies on wireless backhaul, mobile video, Distributed Antenna Systems (DAS), small cells, 4G and residential tower builds. I spoke on a panel at this event and shared our views on small cell evolution, including our thoughts on the migration of the mobile network to the Cloud Radio Access Network (C-RAN) architecture—if interested in this topic, please register for our upcoming webinars: North America or Europe, Middle East, Africa.

In addition, this show also paid significant attention to FirstNet—the nationwide public safety LTE network here in the United States. Aviat’s Ronil Prasad shared Aviat’s perspective on FirstNet, options for network sharing to reduce costs and best practices for building mission-critical backhaul networks for public safety LTE (with our 60-year history in public safety and our deployments in some of the largest LTE networks in the world, we are uniquely qualified to talk on this topic).

In addition, Aviat’s meeting facility experienced a constant flow of customers, industry analysts and partners, which kept Aviat staff on its toes for the entire event. Overall, it was a great show and Aviat was happy to participate to share our views on some of the most exciting new topics in mobile networks in the U.S.

Gary Croke
Director, Marketing and Communications
Aviat Networks

  • May 12, 2013

Low Latency Microwave Serves Many Purposes

Trevor Burchell, VP of Europe, Africa, Middle East Sales and Services.

Trevor Burchell, Aviat VP of Middle East, Africa and Europe Sales and Services.

In a recent interview, Trevor Burchell, Aviat Networks VP for Middle East, Africa and Europe sales and services, commented on the recent trend of low latency microwave networks. Though increasingly found in the telecom infrastructure of financial institutions, low latency microwave is not limited to these applications, he says. Burchell sees its applicability in uses as diverse as health care, government and utilities.

Some considerations are common to all microwave networks—low latency and all others, according to Burchell. Proper path planning and network engineering must be executed in order to have the most fully functional wireless point-to-point  backhaul possible, he says.

In general, Burchell sees microwave as the best choice where telecommunications have to be rolled out quickly and cost effectively. There are many other points to consider. The complete interview is available online in Engineering News.

  • April 26, 2013

The Gavel Comes Down: Auctions are Bad for Wireless Backhaul

Blue-payphone-unless-you-want-to-go-back-to-this-cellular-phones-need-cooperatively-licensed-microwave-backhaul-to-function-properly

Unless you want to return to payphones, cellular technology requires cooperatively licensed microwave backhaul to function properly. Photo credit: UggBoy / Foter.com / CC BY

Competitive licensing of fixed microwave backhaul bandwidth is a bad idea. And it should not go any further. The reasons why are laid bare in a new article in IEEE Spectrum by former electrical engineer and current telecom law firm partner Mitchell Lazarus. In general, he argues against federal spectrum auctions for microwave frequencies, and in particular for fixed microwave links. Undoubtedly, readers are familiar with the large cash bounties governments around the world have netted from competitive bidding on cellular bandwidth—first 3G and now 4G. An inference can be drawn from Lazarus’ article that some governments (i.e., the United States, the United Kingdom) had in mind a similar, if perhaps smaller, revenue enhancement through competitive auctions of microwave channels.

The problem lies in the fallacious thinking that operating fixed point-to-point wireless backhaul bandwidth is comparable to that of mobile spectrum. Whereas mobile spectrum license holders can expect to mostly—if not fully—use the frequencies for which they have paid top dollar, the same has not historically been true of license holders of microwave backhaul bandwidth. In most cases, mobile license holders have a virtual monopoly for their frequencies on a national, or at least regional, basis. Their base stations send and receive cellular phone signals omnidirectionally. They expect throughput from any and all places. So they have paid a premium to make sure no competitors are on their wavelengths causing interference.

On the other hand, U.S. holders of microwave backhaul licenses have specific destinations in mind for the operation of their point-to-point wireless networks. They only need to communicate between proverbial Points A and B. And, historically, they have only sought licenses to operate in their particular bandwidth on a particular route. They had no need to occupy all of their licensed frequency everywhere. That would be a waste. They just have to make sure they have a clear signal for the transmission paths they plan to use. To do that, before licensing, they would collaborate with other microwave users in the vicinity and a frequency-coordination firm to establish an interference-free path plan. Any conceivable network issues would usually be resolved at this stage prior to seeking a license from the Federal Communications Commission. Essentially, the FCC is just a glorified scorekeeper for fixed microwave services, passively maintaining its transmitter location license database.

But starting in 1998, with dollar signs in their eyes, governmental spectrum auctioneers started to sell off microwave frequencies in block licenses. The need for fixed microwave wireless services then was growing and has only grown fiercer with each additional iPhone and iPad that has been activated. However, access device throughput demand on one side of a base station does not necessarily fully translate all the way to the backhaul. Lazarus points out the example of now defunct FiberTower and its failure to make block microwave licenses work economically. After buying national block microwave backhaul licenses at 24 and 39 GHz, Lazarus notes, the firm resold the frequencies to Sprint and a county 911 emergency network operator. But those were the only customers. Lacking a robust enough utilization of its licensed backhaul frequencies, FiberTower had several hundred of its licenses revoked by the FCC and was forced into bankruptcy November 2012.

Subsequent auctions have attracted far fewer bidders and generated much less income for the Treasury Department. Much bandwidth has lain fallow as a result. And infrastructure buildout has stagnated.

Regulators should return the microwave backhaul licensing process to that of letting wireless transmission engineers cooperate informally among themselves, with the help of frequency-coordination firms, to arrive at fixed point-to-point wireless plans in the public interest. These are then submitted only for maintenance by the FCC or other regulators for traditionally nominal license fees—currently $470 per transmitter site for 10 years in the U.S., per Lazarus.

Forget the quixotic quest for chimerical hard currency. The commonweal demands it. You should demand it of the regulators—you can still give input regarding this scheme in some jurisdictions where it is under consideration. Clearly, the most efficient use of spectrum is to make it openly available to all because it means that every scrap of commercially useful spectrum is picked clean. We welcome your comments pro or con.

  • April 19, 2013

Low Latency Microwave Crosses Europe for the First Time

financial-trades-depend-on-ultra-low-latency-microwave-point-to-point-wireless-networks

Successful financial trades depend on ultra low latency microwave networks. Photo credit: francisco.j.gonzalez / Foter.com / CC BY

Germany is well-known for its autobahn highway system, where there are no official speed limits. Now there is a new high-speed network that traverses Western Europe from Frankfurt in Germany to London in the UK.

In addition, you may have read elsewhere in recent weeks about low latency microwave networks being constructed in the United States in support of the financial markets. The busiest route there is between the financial centers in Chicago and New York, where microwave can shave off 5 milliseconds off the transmission time along the 700 mile (1,000 km) route when compared to fastest fiber network (13 milliseconds). This saving directly equates to revenue for trading houses that are able to leverage this speed advantage.

In the United States, planning and deploying a point-to-point (PTP) microwave network is relatively predictable and straightforward: acquire sites and avoid interference from other network operators. Where PTP wireless networks cross state boundaries, a network operator need only deal with the national telecom regulator, the Federal Communications Commission (FCC), when obtaining required licenses to operate the microwave system.

But in Europe, this is a very different matter. While trans-European fiber networks have been a reality for many years, a microwave route like London to Frankfurt must traverse several national borders, forcing operators to deal with multiple regulators, with complex negotiations needed for microwave paths that cross national boundaries. For this reason very few—if any—microwave networks of this type have been built, up until now. However, the opportunities offered by the combination of the new low latency sector, along with the performance advantage of microwave over fiber, have now made the case  for these kinds of networks compelling enough to outweigh the challenges, and costs, of planning and implementing them.

For a low-latency microwave network servicing the financial sector on the London-to-Frankfurt route, there are a number of major challenges beyond just identifying and securing suitable sites and coordinating frequencies. The difficulty of planning a long trunk route is also greatly exacerbated by going through the densely urbanized region of Western Europe. This results in a constant iteration between finding the right route, identifying accessible sites, and securing required microwave frequencies. To be successful you need all three—a site on a great route is useless if no microwave spectrum is available. All the while, there are other competing providers all trying to complete the same route in the fastest time possible—not only in latency terms, but also time to revenue.

This poses huge potential pitfalls in having to take the long way around, requiring additional sites and links, if a site is not available. The added latency caused by any such deviation could kill the entire project. This race is like no other in the microwave business—whoever is fastest wins first prize, and it is winner take all in this competition. The potential revenue for the London-to-Frankfurt low-latency path is quite staggering, even on a regular day, but on busy days when the market is volatile the potential can be much higher.  Operators can plan on recouping their total investment in the microwave network in well under a year. Then once you have the most direct route, compared to your competitors, your problems may not be over, so it can come down to squeezing those extra few microseconds, or even nanoseconds, out of your equipment.

On this particular route there is also one significant natural barrier to contend with—the English Channel. There are only a few ways across that are short enough to allow a reliable microwave path, space diversity protection is a must and only a few towers are tall enough to support these distances. Even though there are no obstacles over the channel (apart from the occasional container ship), towers need to be high enough to allow the microwave signal to shoot over the bulge of the earth. Again, securing tower space at these sites is critical to success, but also obtaining the right to use one or more of a finite pool of available frequency channels, otherwise fiber may be needed across this stage, adding latency. One group even took the step of purchasing a microwave site in the Low Countries to secure it precisely for this purpose.

London to Frankfurt will only be the start for low latency microwave networks in Europe, as there is always a need and an opportunity to provide competitive transmission services to other financial centers throughout the continent. The winners will be those with the speed and agility to quickly seize these opportunities, along with working with the right microwave partner who can help them with the intensely complex business of planning and deploying these trans-national networks, and who can also supply microwave systems with ultra-low latency performance.

We will have more to say publicly on this topic in the near future. Or if you prefer not to wait that long, we would be more than happy to have a private conversation about low-latency microwave with you.

  • March 22, 2013

Public Safety Voice Legacy vs. LTE Broadband Future

Aviat-at-IWCE-public-safety-LTE-broadband-microwave-backhaulIWCE 2013 (International Wireless Communications Expo), March 13-14, was a tale of two different but related stories. The first was the continuing enhancement of legacy P25 voice-centric products/features/ applications and the second was discussion of the LTE broadband data-centric network plan/products/ solutions of the future.

P25 continues to be the only source of mission-critical voice, and the consensus is that will not change for maybe 10 more years—or longer. We saw really cool product enhancements from Motorola and Harris. Clearly, there is plenty of investment continuing in P25, and vendors believe they will get a return on that investment. There is still a tremendous amount of work to be done on going from analog to digital systems and wideband to narrowband.

In contrast, LTE broadband will probably take another 1.5 years just to get to the stage of RFQs. However, we did see a lot of innovative technology and interoperability demonstrations. Who would have thought that Harris handheld radios would be located in the Alcatel-Lucent booth and Motorola in the Raytheon booth?

There were many talks on FirstNet strategy and planning. Chief Dowd said FirstNet would announce a general manager within a couple weeks…let’s hope it is a public safety professional with many years of experience in setting up mission-critical networks. Of course, the industry pundits were there to discuss their view of this enormous challenge…unfortunately it appears the thinking is still very divergent…which can only mean that someone is going to be disappointed by the decisions FirstNet will make.

Many provider-based discussions were also held. For example, Aviat’s own Gary Croke gave a presentation on the considerations that any organization must make for high-speed backhaul and how microwave fits into those.

Lastly, we heard some excellent talks on engineering this network. Skilled network designers like Bob Shapiro gave us some insight into how the LTE network will look different from P25 networks (e.g., number of basestations, capacity of traffic, complexity of design). Good news is the industry is developing some excellent design tools to aid in designing the network.

The signs are positive for the public safety industry. IWCE show attendance was good, vendors showed up with real innovation and investment in new products, the Public Safety Broadband Network continues to move ahead…cannot wait for APCO in the fall!

Randy Jenkins
Director Business Development
Aviat Networks

  • FirstNet Board Named for Nationwide Public Safety Broadband Network (aviatnetworks.com)
  • NTIA will hand out $121.5M to aid FirstNet effort (fiercebroadbandwireless.com)
  • VoLTE outshines emergency communications radios (fiercebroadbandwireless.com)
  • DHS to Discuss FirstNet During Twitter Chat (psbroadband.com)
  • Critical Role of Microwave in LTE and Small Cell Backhaul (aviatnetworks.com)
  • Broadcom’s new chip could bring 150 Mbps mobile broadband to your phone or tablet (gigaom.com)
  • February 15, 2013

All-Outdoor Radios Part II: Three Ways to Choose the Right ODR

Photo credit: mrbill / Foter.com / CC BY

Photo credit: mrbill / Foter.com / CC BY

A quick Google-glance around the Internet will reveal a panoply of all-outdoor radios (ODRs) in both microwave and millimeter-wave bands. ODRs do not conform to a universal norm in terms of networking features, power consumption, bandwidth scalability (i.e., capacity) or outright radio horsepower (i.e., system gain).

So if you find yourself asking the questions, “Which ODR is the best fit for my network?” or “How do I narrow the ODR field?” it is good to start with the basics.

The right product choice can be quickly resolved—or at least the candidates can be short-listed—by focusing on three ODR product attributes that most heavily influence the value-for-the-money (i.e., total cost of ownership or TCO) equation:

  • Packet throughput capacity, which dictates the usable life of the ODR
  • Power consumption, which affects the energy bill
  • RF performance, which impacts antenna size—more system gain equates to smaller antennas

For many microwave backhaul networks, the growth in underlying traffic is such that products which cannot scale to 500 Mbps/1 Gbps per channel will run out of momentum too early and precipitate the dreaded “forklift upgrade” (also known as the “CFO’s nightmare”).

These same CFOs are also suffering sleepless nights due to rising energy costs—which in some countries can double year-over-year. Therefore, it behooves the operator to seek and prioritize the use of über energy-efficient products, such as the Aviat WTM 3200, which—and this is important—do not compromise on RF performance.

That brings me to my last point: System gain (RF performance) remains a core TCO factor insofar as it can drive smaller antenna usage with the concomitant capex savings. Still, there might be little to differentiate ODRs in terms of RF performance—in which case the spotlight will fall on these other attributes to sway the decision.

Having worked on the operator side and wrestled with TCO analysis on many occasions, my experience tells me that you can narrow your ODR choice quickly by reflecting on these three attributes and the TCO gains they can deliver.

Jarlath Lally
Product Marketing Manager
Aviat Networks

  • December 21, 2012

On Wall Street Low Latency Microwave Fulfills Faster than Fiber

Happy Holidays and Happy New Year from all of us at Aviat Networks. Just as you are finishing those final gifting ideas for the winter, we would like to share a few thoughts from Travis Mitchell, Aviat Networks director of low latency business development. In the just published article “Microwave Technology for Low Latency Trading Networks” in Wall Street & Technology, Travis clears up the misconceptions that trading technologists may have about microwave communications, many of which have carried over from the age of analog radio and do not apply to digital microwave.

In addition, Travis spells out the advantages that low latency microwave has over fiber optic technology. Two of these are the point-to-point, direct line-of-sight communications between microwave stations and the absolute higher speed microwaves can achieve. In comparison, fiber communications oftentimes do not run directly from Point A to Point B but must instead wind their way around obstacles, burrow underground, climb tall buildings and so on before reaching their destination. This extra distance covered contributes delay to the overall latency experienced by trades sent via fiber as compared to microwave.

Then the immutable laws of nature tell us that microwave communications—even traveling through the atmosphere—approach very close to the speed of light. On the other hand, laser communications traversing the dense medium of fiber optics are much slower than the speed of light—many tens of percentage points slower than the speed of light.

To close, Travis briefly summarizes other factors that go into making low latency microwave networking the choice for traders over fiber, including minimizing the network route, maximizing the distance between microwave hops and using passive repeater technology, when appropriate. For the whole story, see the article. Other resources also include our low latency microwave white paper and low latency webinar replay.

Subscribe to our newsletter