
Aviat Networks’ Packet Node IRU600 is an example of an all-indoor microwave radio, which is one choice wireless operators should consider for implementations in North America.
There’s a lot of buzz in the microwave industry about the trend toward all-outdoor radios, but those who haven’t been through LTE deployments may be surprised to learn that based on our experience deploying LTE backhaul for some of the world’s largest LTE networks, all-indoor is actually the best radio architecture for LTE backhaul.
We can debate today’s LTE backhaul capacity requirements, but one thing we do know is that with new advances in LTE technology, the capacity needed is going to grow. This means that microwave radios installed for backhaul will likely have to be upgraded with more capacity over time. Although people are experimenting with compression techniques and very high QAM modulations and other capacity extension solutions, the most proven way to expand capacity is to add radio channels because it represents real usable bandwidth independent of packet sizes, traffic mix and the RF propagation environment.
All-indoor radios are more expensive initially in terms of capital expenditures, but they’re cheaper to expand and (as electronics are accessible without tower climb) are more easily serviced. While an outdoor radio connects to the antenna with Ethernet or coax cable, indoor radios usually need a more expensive waveguide to carry the RF signal from the radio to the antenna. So you pay more up front with an all-indoor radio but as the radio’s capacity grows you save money. There are several reasons.
When everything related to the radio is indoors, you just have a waveguide and an antenna up on the tower. To add radio channels with an all-indoor radio you go into the cabinet and add an RF unit. With an outdoor radio, you have to climb the tower, which can cost as much as $10,000. Also, when you add a new outdoor RF unit you may have to swap out the antenna for a larger one due to extra losses incurred by having to combine radio channels on tower….(read the full story at RCR Wireless).
Gary Croke
Senior Product Marketing Manager
Aviat Networks
Related articles
- Microwave Backhaul for Public Safety LTE (aviatnetworks.com)
- Sprint: Ethernet backhaul gives us 20 times more bandwidth (fiercebroadbandwireless.com)
- Microwave Wireless Backhaul Case Study: Tooele County (Utah) (aviatnetworks.com)
- Construction, Not Capacity, is the Real LTE Challenge in U.S. (aviatnetworks.com)
- Worldwide Survey Finds Mobile Operators Aren’t fully Benefitting from the Value of IP/Ethernet Backhaul Architectures (infovista.com)